
1

 Faster Searching Methods

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Hashing: Motivation
• Consider the problem of counting the numbers of each

kind of char in a file.
• If chars are represented by bytes (perspective of pre-Java

langages), then we can index a 256 entry table by character
code. Idea; convert chars to unique table indices.

• If chars are represented by 16-bit Unicode (UTF-16), we can
still use this approach; only requires an array of counters of
size 64K (2**16).

• But what it we want to generalize our application to process
characters encoded using 32-bit unicode (UTF-32). No
longer practical to use direct mapping of a char to its binary
representation for a table index.

How can we handle UTF-32?.

COMP 211, Spring 2009 3

Hashing: Motivation cont.
• Consider a similar more interesting problem of

counting the number of occurrences of each word in a
huge text file. We can easily parse the input stream in
words (assuming we can agree on the set of delimiter
characters). But how we represent and manage the
table recording the words we have seen.

• Key idea: using a “scrambling” (hash) function to map
large chars (UTF-32) or strings (words) to indices in the
rnge [0, N-1] where N is approximately equal to the
size of the longest file (measured in the items we are
counting) we expect to process.

COMP 211, Spring 2009 4

Hashing Functions
• Standard practice: hash functions yield an unsigned

binary number in same format as machine addresses
(formerly 32-bit binary but morphing to 64-bit binary).

• Address-sized hash codes are easily mapped to indices
in the range [0, N-1] by the remainder operation (a by-
product of machine division). If N is a power of 2, then
remainders can by computed by shift operations (which
are extremely fast), but there are theoretical advantages
to using a prime number for N. (Perhaps not worth it
in practice.)

COMP 211, Spring 2009 5

Hashing Functions
• Devising good hash functions is an art (lots of pages on the web and some of

them are technically sound)
• Rules of thumb:

• The hash code for an object must be consistent with equality. (Equal objects never
hash to different codes.)

• Hashing mutable objects is insane unless you are using object identity as the
definition of object equality. (Default hashCode() in Java has this property. Can
also use IdentityHashMap.

• The hash code for an object should depend on all of the fields of the object.
• Exclusive-or is a good way to combine hash codes because it directly depends on

all bits, yet is very cheap.
• Computation of hash code should be cheap, although some extra expense is

justifiable if the code is cached with the object.
• Achilles heel of hash functions: aliasing (unequal objects mapped to same code).

COMP 211, Spring 2009 6

Two basic approaches to hashing
• Open addressing: all counters are stored directly in table.

Collisions force reprobing which must be deterministic. Simple
scheme is linear probing. But in practice, forget this approach.
No significant advantage over direct chaining except in unusual
situations.

• Direct chaining (“bucket hashing”) Table consists of a block of
linked list headers. There is a linked list for each hash code
value. Actual hash entries are stored as separate objects in an
auxiliary areas (usually the heap). Only significant weakness is
less locality because object addresses are scattered across the
heap. (Can be overcome by allocating objects within array
blocks stored in heap, but this is a big book-keeping hassle.)

COMP 211, Spring 2009 7

Sample Hash Table Code
• The MyHashMap code base implements exactly the same MapI interface as OOTreeMap.
• It is straightforward but ugly; it is classic procedural code encapsulated as a Java class to hide the

procedural details. From the clientʼs perspective, there is no way to detect that the
implementation is procedural. The linked list Node class is a private nested class.

• Why did I use procedural coding? For a simple data structure like MyHashMap, the procedural
code is tractable and signficantly more efficient that OO code (which is important in a library). In
Java software development, almost nobody writes hash table implementations anymore!
Everybody uses HashSet, HashMap, ConcurrentHashMap, and IdentityHashMap.
(HashTable is obsolescent). If procedural code is easily encapsulated, significantly more
efficient, and important to an applications overall efficiency, then I have no objection to writing
procedural code. But note that the conjunction of these criteria doesnʼt arise very often.

• Each bucket is a singly linked list. Within a bucket, linear searching is necessary.
• Optimization trick in cases where load factor is high: move last referenced item to front of list on

each access. (I did not bother with this optimization, because it only makes sense when buckets
get large, which this implementation prevents.)

• Large load factors should be avoided if possible. MyHashMap never lets it get above 1.0. In an
application written in a high-level language (not C/C++), it is almost always possible. Why?

• When the table gets full, double the table size and rehash! MyHashMap does this and it only takes
about 10 lines of code. The asymptotic cost is zero! (Why? The sum of 2k, k = 0, … N-1 = 2N-
1.)

COMP 211, Spring 2009 8

Exam preparation
• Read the notes on OO Design up through end of Ch. 2.
• Emphasis on how to write clean OO code using design patterns.

The functional subset is important. Given a simple Scheme
program manipulating inductively defined data, you should be
able to convert it to a corresponding Java program (same
recursion pattern) defined on a corresponding composite class
hierarchy. Then perform tail recursion optimization. Then
convert it to a loop. More precisely

• Convert the data definition to OO form (composite with optional
singleton).

• Convert the Scheme function to a method defined over the composite
using the interpreter pattern.

• Convert method to tail recursive form by introducing a help method.

COMP 211, Spring 2009 9

Exam preparation cont.
• Convert tail recursive method with help function to a

loop (with no help function). Loop iteration
corresponds to a call on help function.

• Convert interpreter definition of method to visitor form.
• Understanding generics helps.

COMP 211, Spring 2009 10

For Next Class
• Exam over OO material will be distributed on

Friday, April 10, and due by 11:59PM on Friday,
April 17 in my office.

• Tic-tac-toe homework due Friday. We are
demoting the Alpha-Beta pruning part to extra
credit. Like the last assignment, you only have to
write a modest part of the total application. Have
fun.

• Please, please read my notes on OO Design.
• Fridayʼs lecture will discuss HW 12.

