
 1

 Faster Sorting Methods

Corky Cartwright
Department of Computer

Science
Rice University

 COMP 211, Spring 2009 2

Large-scale Sorting
• Given a array of records (tuples with named

fields) R, construct an array R’ containing
the same set of records as R but in
ascending (non-descending) order according
to a specified key field of the record. The
type of the key must be totally ordered; in
the simple standard case the key is an int or
a long.

• Two common scenarios and one pathology:
• R comfortably fits in main memory (internal sort)
• R is too big to fit in main memory (external sort)
• R barely fits in main memory (Radix sort with

links; QuickSort use a little extra memory)

 COMP 211, Spring 2009 3

External Sorting
• Not as important as in the past because main memories are so large.
• Modern approach: use multiple machines. If keys are randomly

distributed, you can pre-partition the data into disjoint ordered chunks
that will each fit in memory (with very high probability). If a chunk
doesn’t fit, divide it in 2). Sort each chunk internally and concatenate
the sorted chunks into a single file. In practice an array of “chunk”
files is probably a better representation anyway than a single file. If
pre-partioning is not possible, follow the traditional approach adapted
to multiple machines.

• Traditional approach: single processor and tape drives. Partition file
into chunks that fit in memory. (No key distribution is assumed.) Sort
each of them. Then sort the data in these ordered chunks into a
single file by repeated merging. Merging can be done cleverly using a
tournament tree to reduce I/O. See Knuth, Volume 3 (Sorting and
Searching)

• Time is O(N log N) except for case where pre-partitioning into disjoint,
ordered subsets is possible.

 COMP 211, Spring 2009 4

Large Scale Internal Sorting
• Consider the problem of sorting on the order of billion

records based on an int key field. How fast can we do it?
O(n2)? O(n log n)? O(n)?

• First essential kernel: counting sort for small keys
• Central idea (same as in hashing): index a table by the key.
• We can count how many records have a given key value in

linear time.
• We accumulate these counts to form an offset array so that

offset[i] is the index of the first record with key I when placed in
sorted order.

• Given the offset array, we can copy our original array of records
to a new sorted array in linear time

• Second essential kernel: radix sorting

 COMP 211, Spring 2009 5

Stable sorting
• A sorting algorithm is stable iff it

preserves the ordering of records with
equal keys.

 COMP 211, Spring 2009 6

Radix sorting
• Canonical algorithm for sorting

punched cards using a card sorter
(obsolete).

• Stably sort a deck of cards (list of
records) on each radix digit from LSD
(left) to MSD (right) using a counting
sort to perform each pass.

 COMP 211, Spring 2009 7

Radix sorting using an int or
long key

• Divide int/long key into two/four digits of size 216.

• Perform radix sort.
• Unbelievably fast for a large data set. Runs in linear time

(worst case!)
• With randomized key distribution, we can do even better by

using an MSD radix sort (which is messier). See the Sedgwick
reference. But in the int case, we only need to do a counting
sort on the lead 16 bit digit and clean up with “straight”
insertion sorting.

• Note: straight insertion is generally the best way to sort a
short array of ints; it repeatedly inserts the ith element a[I] in
proper position (relative to a[0], … a[i-1]) by shifting elements
among a[0], … a[i-1] greater than a[i] up one position.

•

 COMP 211, Spring 2009 8

Radix sorting cont.
• Perhaps a good match for C rather than Java.

• Coding is very easy; array is only data structure.
• Storage management is very easy.

• Java Arrays.sort(…) is much, much slower. What
good is it? For smaller arrays, the overhead of
traversing 216 buckets overwhelms the cost of the
sort.

• The power of radix sorting is under-emphasized
in Comp Sci curricula.

• See Algorithms in Java by Robert Sedgwick

•

 COMP 211, Spring 2009 9

Exam preparation
• Read the notes on OO Design up through end of Ch. 2.
• Emphasis on how to write clean OO code using design patterns.

 The functional subset is important. Given a simple Scheme
program manipulating inductively defined data, you should be
able to convert it to a corresponding Java program (same
recursion pattern) defined on a corresponding composite class
hierarchy. Then perform tail recursion optimization. Then
convert it to a loop. More precisely

• Convert the data definition to OO form (composite with optional
singleton).

• Convert the Scheme function to a method defined over the composite
using the interpreter pattern.

• Convert method to tail recursive form by introducing a help method.

 COMP 211, Spring 2009 10

Exam preparation cont.
• Convert tail recursive method with help

function to a loop (with no help function).
Loop iteration corresponds to a call on help
function.

• Convert interpreter definition of method to
visitor form.

• Understanding generics helps.

 COMP 211, Spring 2009 11

For Next Class
• Exam over OO material was distributed on Friday,

April 10, and is due by 11:59PM on Friday, April 17 in
my office.

• Game framework homework due Friday. Do the
Alpha-Beta pruning even though it is extra credit
because it is easy relative to the reward. Like the last
assignment, you only have to write a modest part of
the total application. Have fun.

• Please, please read my notes on OO Design.
• Friday’s lecture will discuss GUIs.

	 Faster Sorting Methods
	Large-scale Sorting
	External Sorting
	Large Scale Internal Sorting
	Stable sorting
	Radix sorting
	Radix sorting using an int or long key
	Radix sorting cont.
	Exam preparation
	Exam preparation cont.
	For Next Class

