
 1

 Fast Searching and Memoization

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

 Hashing: Motivation

• Consider the problem of counting the numbers of each kind
of char in a file.
• If chars are represented by 8-bit bytes (the usual perspective of

pre-Java langages), then we can index a 256 entry table by
character code.
Idea: convert chars to unique table indices.

• If chars are represented by 16-bit Unicode (UTF-16), we can still
use this approach. It only requires an array of counters of size
64K (2**16).

• But what it we want to generalize our application to process
characters encoded using 32-bit unicode (UTF-32). No longer
practical to use direct mapping of a char to its binary
representation for a table index.

How can we handle UTF-32?.

COMP 211, Spring 2010 3

 Hashing: Motivation cont.

• Consider the similar but more interesting problem of
counting the number of occurrences of each word in a huge
text file. We can easily parse the input stream into words
(assuming we can agree on the set of delimiter characters).
But how we represent and manage the table recording the
words we have seen.

• Key idea: using a “scrambling” (hash) function to map large
chars (UTF-32) or strings (words) to indices in the range [0,
N-1] where N is approximately equal to the size of the
longest file (measured in the items we are counting) we
expect to process.

COMP 211, Spring 2010 4

 Hashing Functions

• Standard practice: hash functions yield an
unsigned binary number in same format as
machine addresses (formerly 32-bit binary but
morphing to 64-bit binary).

• Address-sized hash codes are easily mapped to
indices in the range [0, N-1] by the remainder
operation (a by-product of machine division). If N
is a power of 2, then remainders can by computed
by shift operations (which are extremely fast), but
there are theoretical advantages to using a prime
number for N. (Perhaps not worth it in practice.)

COMP 211, Spring 2010 5

 Hashing Functions

• Devising good hash functions is an art (lots of pages on the web and
some of them are technically sound)

• Rules of thumb:
• The hash code for an object must be consistent with equality. (Equal objects
never hash to different codes.)

• Hashing mutable objects is insane unless you are using object identity as the
definition of object equality. (defaultHashCode()in Java has this property.
Can also use IdentityHashMap.

• The hash code for an object should depend on all of the fields of the object.
• Exclusive-or is a good way to combine hash codes because it directly

depends on all bits, yet is very cheap.
• Computation of hash code should be cheap, although some extra expense is

justifiable if the hash code is cached with the object.
• Achilles heel of hash functions: aliasing (unequal objects mapped to same

code).

COMP 211, Spring 2010 6

 Two basic approaches to hashing
• Open addressing: all counters are stored directly in table.

Collisions force reprobing which must be deterministic.
Simple scheme is linear probing. But in practice, forget
open addressing. No significant advantage over direct
chaining except in unusual situations.

• Direct chaining (“bucket hashing”) Table consists of an
array (block) of linked list headers. There is a linked list for
each hash code value. Actual hash entries are stored as
separate objects in an auxiliary area (usually the heap).
Only significant weakness is less locality because object
locations are scattered across the heap. (Can be mitigated
by allocating objects within array blocks stored in heap, but
this is a big book-keeping hassle.)

COMP 211, Spring 2010 7

 Sample Hash Table Code

• The MyHashMap class implements exactly the same MapI interface as OOTreeMap.
• It is straightforward but ugly; it is classic procedural code encapsulated as a Java class to hide the procedural

details. From the client’s perspective, there is no way to detect that the implementation is procedural. The
linked list Node class is a private nested class.

• Why did I use procedural coding in writing MyHashMap? For a simple data structure like MyHashMap, the
procedural code is tractable and significantly more efficient that OO code (which is important in a library). In
Java software development, almost nobody writes hash table implementations anymore! Everybody uses
HashSet, HashMap, ConcurrentHashMap, and IdentityHashMap. (HashTable is obsolescent because
all of its methods are synchronized). If procedural code is easily encapsulated, significantly more efficient,
and important to an applications overall efficiency, then I have no objection to writing procedural code. But note
that the conjunction of these criteria doesn’t arise very often.

• Each bucket is a singly linked list. Within a bucket, linear searching is necessary. (If the keys are ordered,
buckets can, in principle, be search trees of some form, but why bother? Simply make the hash table bigger to
reduce the average size of each bucket.)

• Optimization trick in cases where load factor is high: move last referenced item to front of list on each access.
(I did not bother with this optimization, because it only makes sense when buckets get large, which this
implementation prevents.)

• Large load factors should be avoided if possible. MyHashMap never lets it get above 1.0. In an application
written in a high-level language (not C/C++), it is almost always possible. Why?

• When the table gets full, double the table size and rehash! MyHashMap does this and it only takes about 10
lines of code. The asymptotic cost is zero! (Why? The sum of 2k, k = 0, … N-1 = 2N-1.)

COMP 211, Spring 2010 8

 Memoization

• Key idea: avoid recomputing the solution to a subproblem that has
already been solved.

• Key technique: brute force. Keep a hash table mapping subproblem
descriptions to subproblem answers.

• Simple illustration: naïve Fibonacci function.

• class MyMath {
 static long fib(int n) {
 if (n <= 1) return 1;
 else return fib(n-1) + fib(n-2);
 }
}

COMP 211, Spring 2010 9

 Memoization cont.

import java.util.HashMap;
class BetterMath {
 static HashMap<Integer, Long> Fib =

 new HashMap<Integer, Long>();
 static long fib(int n) {
 if (n <= 1) return 1;
 else {
 Long cachedAnswer = Fib.get(n);
 if (cachedAnswer != null) return cachedAnswer;
 else {
 long newAnswer = fib(n-1) + fib(n-2);
 Fib.put(n, newAnswer);
 return newAnswer;
 }
 }
}

COMP 211, Spring 2010

 More Challenging Examples

• The best known solutions to many standard
computational problems can be formulated as the
memoization of naïve solutions.

• Memoized algorithms correspond to a problem solving
technique called dynamic programming.

• Examples: parsing CFGs (CYK algorithm), optimizing
muliplying a chain of matrices of varying sizes,
shortest path between two nodes in a graph.

COMP 211, Spring 2010 11

For Next Class
• Exam II over OO material will be given at

scheduled site on Friday, April 30.
• Parallel sudoku homework due Friday. Have

fun.
• Please read my notes on OO Design.
• Wedneday’s lecture will discuss tradeoffs in

designing parallel implementations.
• Friday's lecture will review the Java portion of

the course to help you study for Exam II.

COMP 211, Spring 2010

 Matrix Chain Multiplication

• Suggestion: look it up in Wikipedia

• In principle: a simple clean example to program in high level form in Java.

• Simple form of problem: determine minimum number of scalar multiplications required.

• More useful for of the problem: return the decomposition that yields the minimum number of
multiplications.

• Solving the first implicitly solves the second BUT you have to record the optimum
partitioning choices.

• Sample input: 3 x 4 x 10 x 2, i.e. A * B * C
 A is 3 x 4
 B is 4 x 10
 C is 10 x 2
Which is better? A * (B * C) or (A * B) * C.

• 3 x 4 x 2 + 4 x 10 x 2 = 24 + 80 = 104

• 3 x 4 x 10 + 3 x 10 x 2 = 120 + 60 = 180

• Former is better

• Subtle data representation choice. How do we describe input problems in memo table? In
absolute terms as lists of indices? In relative terms as pairs of indices (relative to the
problem given at the top level). The first is cleaner but the second is likely to be
significantly more efficient because the descriptions are more compact (constant in size).
I'll program the second and post it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Memo Functions cont.
	Slide 10
	Slide 11
	Slide 12

