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[Loose Ends

Schedule time for weekly bonus lecture Supplemental mathematical
commentary on course material. Possible times:

W 2
W3
Tu9
Tu 10
Tu 11
Tu 1
Tu 2
Tu 3

Bonus problem: right-evaluation vs. left-hand evaluation. Any takers?
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From last lecture: List template

«) N

;7 (define (f S—Zaglist ...) \ A

H- (cond

H- [ (empty? a-list) ...]

7 [else ... (first a-list)dii/.

- .. (£ ... (rest a-list) ...) ...1))

Template does not depend on element type. It applies to
alpha-list where alpha is any type. In fact, some functions
like 1ength (iIn HWOI under a different name and restricted
to symbols), reverse, append, first, rest work for all

types alpha-list.
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Plan for Today

. LList abbreviations

. Practice with the list template

. Choosing the argument to process

. Recognizing when help (auxiliary) functions
are required/advisable.

- Data-directed design with numbers
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[List Abbreviations

. Abbreviations

Let c1, c2, ..., cnbe constants (including quoted symbols).
(list ¢l c2 ... cn) abbreviates
(cons c1 (cons c2 ... (cons cn empty))...)

Let s1, s2, ..., snbe symbols , constants (excluding symbols) or
lists constructed of such atoms.

'(sl ... sn) abbreviates (list 'sl ... 'sn)

Examples (all equal)
"((1 2) (3 four))
(list (list 1 2) (list 3 'four))

(cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

- Avoid nesting quotation!
- Avoid using true, false, empty inside quotation.
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A simple list function that takes 2 list arguments

- The append function that concatenates lists 1s

built-in to Scheme.
; app: list-of-alpha list-of-alpha -> list-of-alpha
; purpose: (append a b) concatenates the lists a and b.

; Examples

;7 (app '(a b) "(c¢ d)) = "(a b c d)
; (app empty '(c d)) = "(c d)

; (app '(a b) empty) = '"(a b)

; Instantiated template (on which argument do we recur?)
| #
(define (app X y)
(cond [ (empty x?) ...]
[ (cons? x?) ... (first x) ...
4] (app (rest x) y) ... 1))
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append cont.

:+ Code:
(define (app X Vy)
(cond [ (empty x?) V]
[ (cons? x?) (cons (first x) (app (rest x)

; Test:
(check-expect (app '(a b) '(c d)) '"(a b c d))

(check-expect (app empty '(c d)) '(c d4d))
(check-expect (app '(a b) empty) '(a b))

Would recurring on the second argument work?
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Using append as an auxiliary function

append is included in the Scheme library

- concatenation 1s the common string (a form of list of
char) “construction” operation

- Problem: cost of operation 1s not constant; it 1s
proportional to size of first argument (or, in case of
strings, size of constructed list)

- Example of function that uses append to construct
its result: £latten
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Defining £latten

flatten: list-of-list-of-alpha -> list-of-alpha
Purpose: concatenates all of the lists of elements in the
input to form a list of elements
Examples:
(flatten ‘((a b) (c d) (e £f)) = ‘“(a b c d e f)
(flatten empty) = empty
(flatten ‘((a b) empty (c d)) = ‘(a b c d)
(flatten ‘(empty (a b) (c d) empty) = ‘(a b c d)

Recall that:
;; A list-of-alpha is either:

-
L] e e ~-e e e ~e e

. ~e

-
-

-

empty, or
(cons a aloa) where a is an alpha and aloa is a list-of-alpha
Template:
(define (f (... aloa ...)
(cond [ (empty? aloa) ...]
[ (cons? Aloa) ... (first aloa)
eee (£ ... (rest aloa) ...) ...1))

~e

. ~e

e e e -
~e e e ~e e e e e

~e
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Defining £latten

;; Template Instantiation:
#|

(define (flatten aloloa)

(cond [ (empty? aloloa) empty]
[ (cons? aloloa) ... (first aloloa)
(flatten (rest aloloa)) ... 1))

| #
;; Code:
(define (flatten aloloa)

(cond [ (empty? aloloa) empty]

[ (cons? aloloa) (append (first aloloa) (flatten (rest aloloa)))]))

;77 Tests

;; WARNING: empty, true, false do NOT work inside
(check-expect (flatten '((a b) (c d) (e £f)) '"(abc de £f))
(check-expect (flatten empty) empty)

(check-expect (flatten '((a b) () (c d)) '(a b c d))
(check-expect (flatten '(() (a b) (c d) ()) '"(a b c d))
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Examples of Inductive Data
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Examples of Algebraic Data

Files on your computer
Simple File, or
Folder, which contains a list of Files

XML

General format for representing
Internet domain names
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Natural Numbers: Data definition

Standard definition from mathematics
;7 A natural-number (N for short) is either

H 0, or

77 (addl n)

;; where n is a natural-number
Comments:

In mathematics, add1 is ususally called succ or S, for successor.

Principle of mathematical induction for the natural numbers is based on
this definition:

P(0), Vx [P(x) -> P(S(x))]

Vx P(x)

Is there an analogous induction principle for other forms of inductively
defined data?
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Examples and Basic Operations

. Examples (using constructors)
Zero: 0
One: (addl 0)
Four: (addl (addl (addl (addl 0))))

. Accessors:
subl t: N -> N

Note: subl is typically called pred or P in mathematics; using subl
instead is a bit of a cheat because sub1l (0) behaves incorrectly.

Recognizers:
zero? : Any -> bool
positive?: Any -> bool ;; not addl?
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Basic Laws (Reductions) for Natural Numbers

. Recall the ones for lists:
For all elements v, and lists 1, we have

(empty? empty) = true ;; recognizer
(empty? (cons v 1)) = false

(rest (cons v 1)) =1 ;5 accessor
(first (cons v 1)) = v

. Basic laws:
For all natural numbers n, we have

(zero? 0) = true ;; recognizer
(zero? (addl n)) = false

(positive? (addl n)) = true

(positive? 0) = false

(subl (addl n)) = n ;5 accessor

- Similar rules exist for all inductively-defined data types

- What about laws for (equal? ...)
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Natural Numbers: Recipe

Template is very similar to lists:

;7 £ : natural-number -> ..
;7 (define (f n)

;7 (cond [(zero? n) ...]
- [ (positive? n)
i ee.(f (subl n))
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Example

Write a function that repeats a symbol s several (n) times

Examples

(repeat 'Rabbit 0) = empty

(repeat 'Rabbit (addl (addl 0)))

= (cons 'Rabbit (cons ’'Rabbit empty))

Code:
;; repeat : symbol natural-number -> list-of-symbol
(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (subl n)))]))
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More Examples

add: N N -> N
multiply: N N -> N
factorial: N -> N

Defining and using familiar functions on natural numbers
helps us understand this set
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Add

(define (add m n)
(cond

[ (zero? m) n]
[ (positive? m) (addl (add (subl m) n))]))

(define (right-add m n)
(cond
[ (zero? n) m]
[ (positive? n) (addl (right-add m (subl n)))]))
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Defining Integers

An integer 1s either:
0; or
(addl n) where n has the form 0 or (add1 ..) [non-negative]; or
(subl n) where n has the formi 0 or (subl ..) [non-positive].

Recognizers:
zero?: any -> bool
positive?: any -> bool
negative?: any -> bool
In Scheme, add1 and sub1l have been extended to all

integers by defining for all integers n :

(addl (subl n)) =n
(subl (addl n)) = n
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For Next Class

- Homework due Wednesday
- Reading: Chs. 11-13
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