Data-directed Design

Corky Cartwright
Department of Computer Science

Rice University

[Loose Ends

Schedule time for weekly bonus lecture Supplemental mathematical
commentary on course material. Possible times:

W 2
W3
Tu9
Tu 10
Tu 11
Tu 1
Tu 2
Tu 3

Bonus problem: right-evaluation vs. left-hand evaluation. Any takers?

COMP 211, Spring 2009 2

From last lecture: List template

«) N

;7 (define (f S—Zaglist ...) \ A

H- (cond

H- [(empty? a-list) ...]

7 [else ... (first a-list)dii/.

- .. (£ ... (rest a-list) ...) ...1))

Template does not depend on element type. It applies to
alpha-list where alpha is any type. In fact, some functions
like 1ength (iIn HWOI under a different name and restricted
to symbols), reverse, append, first, rest work for all

types alpha-list.

COMP 211, Spring 2009 3

Plan for Today

. LList abbreviations

. Practice with the list template

. Choosing the argument to process

. Recognizing when help (auxiliary) functions
are required/advisable.

- Data-directed design with numbers

COMP 211, Spring 2009

[List Abbreviations

. Abbreviations

Let c1, c2, ..., cnbe constants (including quoted symbols).
(list ¢l c2 ... cn) abbreviates
(cons c1 (cons c2 ... (cons cn empty))...)

Let s1, s2, ..., snbe symbols , constants (excluding symbols) or
lists constructed of such atoms.

'(sl ... sn) abbreviates (list 'sl ... 'sn)

Examples (all equal)
"((1 2) (3 four))
(list (list 1 2) (list 3 'four))

(cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

- Avoid nesting quotation!
- Avoid using true, false, empty inside quotation.

COMP 211, Spring 2009 >

A simple list function that takes 2 list arguments

- The append function that concatenates lists 1s

built-in to Scheme.
; app: list-of-alpha list-of-alpha -> list-of-alpha
; purpose: (append a b) concatenates the lists a and b.

; Examples

;7 (app '(a b) "(c¢ d)) = "(a b c d)
; (app empty '(c d)) = "(c d)

; (app '(a b) empty) = '"(a b)

; Instantiated template (on which argument do we recur?)
| #
(define (app X y)
(cond [(empty x?) ...]
[(cons? x?) ... (first x) ...
4] (app (rest x) y) ... 1))

COMP 211, Spring 2009

append cont.

:+ Code:
(define (app X Vy)
(cond [(empty x?) V]
[(cons? x?) (cons (first x) (app (rest x)

; Test:
(check-expect (app '(a b) '(c d)) '"(a b c d))

(check-expect (app empty '(c d)) '(c d4d))
(check-expect (app '(a b) empty) '(a b))

Would recurring on the second argument work?

COMP 211, Spring 2009

y)1))

Using append as an auxiliary function

append is included in the Scheme library

- concatenation 1s the common string (a form of list of
char) “construction” operation

- Problem: cost of operation 1s not constant; it 1s
proportional to size of first argument (or, in case of
strings, size of constructed list)

- Example of function that uses append to construct
its result: £latten

COMP 211, Spring 2009

Defining £latten

flatten: list-of-list-of-alpha -> list-of-alpha
Purpose: concatenates all of the lists of elements in the
input to form a list of elements
Examples:
(flatten ‘((a b) (c d) (e £f)) = ‘“(a b c d e f)
(flatten empty) = empty
(flatten ‘((a b) empty (c d)) = ‘(a b c d)
(flatten ‘(empty (a b) (c d) empty) = ‘(a b c d)

Recall that:
;; A list-of-alpha is either:

-
L] e e ~-e e e ~e e

. ~e

-
-

-

empty, or
(cons a aloa) where a is an alpha and aloa is a list-of-alpha
Template:
(define (f (... aloa ...)
(cond [(empty? aloa) ...]
[(cons? Aloa) ... (first aloa)
eee (£ ... (rest aloa) ...) ...1))

~e

. ~e

e e e -
~e e e ~e e e e e

~e

COMP 211, Spring 2009

Defining £latten

;; Template Instantiation:
#|

(define (flatten aloloa)

(cond [(empty? aloloa) empty]
[(cons? aloloa) ... (first aloloa)
(flatten (rest aloloa)) ... 1))

| #
;; Code:
(define (flatten aloloa)

(cond [(empty? aloloa) empty]

[(cons? aloloa) (append (first aloloa) (flatten (rest aloloa)))]))

;77 Tests

;; WARNING: empty, true, false do NOT work inside
(check-expect (flatten '((a b) (c d) (e £f)) '"(abc de £f))
(check-expect (flatten empty) empty)

(check-expect (flatten '((a b) () (c d)) '(a b c d))
(check-expect (flatten '(() (a b) (c d) ()) '"(a b c d))

COMP 211, Spring 2009 10

Examples of Inductive Data

COMP 211, Spring 2009

11

Examples of Algebraic Data

Files on your computer
Simple File, or
Folder, which contains a list of Files

XML

General format for representing
Internet domain names

COMP 211, Spring 2009

12

Natural Numbers: Data definition

Standard definition from mathematics
;7 A natural-number (N for short) is either

H 0, or

77 (addl n)

;; where n is a natural-number
Comments:

In mathematics, add1 is ususally called succ or S, for successor.

Principle of mathematical induction for the natural numbers is based on
this definition:

P(0), Vx [P(x) -> P(S(x))]

Vx P(x)

Is there an analogous induction principle for other forms of inductively
defined data?

COMP 211, Spring 2009 13

Examples and Basic Operations

. Examples (using constructors)
Zero: 0
One: (addl 0)
Four: (addl (addl (addl (addl 0))))

. Accessors:
subl t: N -> N

Note: subl is typically called pred or P in mathematics; using subl
instead is a bit of a cheat because sub1l (0) behaves incorrectly.

Recognizers:
zero? : Any -> bool
positive?: Any -> bool ;; not addl?

COMP 211, Spring 2009 14

Basic Laws (Reductions) for Natural Numbers

. Recall the ones for lists:
For all elements v, and lists 1, we have

(empty? empty) = true ;; recognizer
(empty? (cons v 1)) = false

(rest (cons v 1)) =1 ;5 accessor
(first (cons v 1)) = v

. Basic laws:
For all natural numbers n, we have

(zero? 0) = true ;; recognizer
(zero? (addl n)) = false

(positive? (addl n)) = true

(positive? 0) = false

(subl (addl n)) = n ;5 accessor

- Similar rules exist for all inductively-defined data types

- What about laws for (equal? ...)
COMP 211, Spring 2009 15

Natural Numbers: Recipe

Template is very similar to lists:

;7 £ : natural-number -> ..
;7 (define (f n)

;7 (cond [(zero? n) ...]
- [(positive? n)
i ee.(f (subl n))

COMP 211, Spring 2009

-1))

16

Example

Write a function that repeats a symbol s several (n) times

Examples

(repeat 'Rabbit 0) = empty

(repeat 'Rabbit (addl (addl 0)))

= (cons 'Rabbit (cons ’'Rabbit empty))

Code:
;; repeat : symbol natural-number -> list-of-symbol
(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (subl n)))]))

COMP 211, Spring 2009

17

More Examples

add: N N -> N
multiply: N N -> N
factorial: N -> N

Defining and using familiar functions on natural numbers
helps us understand this set

COMP 211, Spring 2009 18

Add

(define (add m n)
(cond

[(zero? m) n]
[(positive? m) (addl (add (subl m) n))]))

(define (right-add m n)
(cond
[(zero? n) m]
[(positive? n) (addl (right-add m (subl n)))]))

COMP 211, Spring 2009 19

Defining Integers

An integer 1s either:
0; or
(addl n) where n has the form 0 or (add1 ..) [non-negative]; or
(subl n) where n has the formi 0 or (subl ..) [non-positive].

Recognizers:
zero?: any -> bool
positive?: any -> bool
negative?: any -> bool
In Scheme, add1 and sub1l have been extended to all

integers by defining for all integers n :

(addl (subl n)) =n
(subl (addl n)) = n

COMP 211, Spring 2009 20

For Next Class

- Homework due Wednesday
- Reading: Chs. 11-13

COMP 211, Spring 2009

21

