!“'_ Data-directed Design

Corky Cartwright
Department of Computer Science
Rice University

From last lecture:

;; (define (£ ...

7y (cond

- [(empty? a-list)

;s [else ... (first &)

H ... (£ ... (rest a-1list) ...) ...1))

Template does not depend on element type. It applies to
alpha-list where alphais any type. In fact, some functions
like length (in HWO1 under a different name and restricted
to symbols), reverse, append, first, rest work for all

types alpha-list.

COMP 211, Spring 2009 2

lSLW Plan for Today

- List abbreviations

- Practice with the list template
- Choosing the argument to process

- Recognizing when help (auxiliary)
functions are required/advisable.

- Data-directed design with numbers

COMP 211, Spring 2009 3

- List Abbreviations

Let e1, e2, ..., en be Scheme expressions. Then
(list el e2 ... en) abbreviates
(cons el (cons e2 ... (cons en empty))...)

Let s1, s2, ..., sn be symbols , numbers, or unquoted lists
(constructed in the same way).

'(sl ... sn) abbreviates (list 'sl ... 'sn)
Examples (all equal)
"((1 2) (3 four))

(list (list 1 2) (list 3 'four))
(cons (cons 1 (cons 2 empty))

(cons (cons 3 (cons 'four empty))) empty)
Do not nest quotation!

Do not use true, false, empty inside quotation. When in

doubt, use (1ist ..) in preference to quotation.
COMP 211, Spring 2009 4

A simple list function of 2 list arguments

he append function that concatenates lists is built-in to Scheme.
; app: list-of-alpha list-of-alpha -> list-of-alpha
; purpose: (append a b) concatenates the lists a and b.

; Examples

; Test:

(check—-expect (app '(a b) '"(c d)) '(a b c d))

(check-expect (app empty '(c d)) '(c d))

(check-expect (app '(a b) empty) '(a b))
; Instantiated template (on which argument do we recur?)
| #

(define (app x Vy)

(cond [(empty x7?) ...]
[(cons? x?) ... (first x)
(app (rest x) y) ... 1))

i |

COMP 211, Spring 2009

append cont.

; Code:
(define (app x V)
(cond [(empty x7?) V]
[(cons? X?)
(cons (first x) (app (rest x) vy)1))

; Test:
(check—-expect (app '(a b) '(c d4d)) '
(check—-expect (app empty '(c d)) '(
(check—-expect (app '(a b) empty) '/

Would recurring on the second argument work?

COMP 211, Spring 2009 6

KA&M Using append as an auxiliary function

append is included in the Scheme library

concatenation 1s the common string (a form of list of
char) “construction” operation

* Problem: cost of operation 1s not constant; 1t 1s
proportional to size of first argument (or, 1n case of
strings, size of constructed list)

Example of function that uses append to construct
its result: £latten

COMP 211, Spring 2009 7

%&W Defining flatten

;; flatten: list-of-list-of-alpha -> list-of-alpha

;; Purpose: concatenates all of the lists of elements in the
;; input to form a list of elements

;; Tests WARNING: empty, true, false do NOT work inside '
(check-expect (flatten '((a b) (c d) (e £f)) "(abcde £f))
(check-expect (flatten empty) empty)

(check-expect (flatten '((a b) () (c d)) '"(a b c d))
(check-expect (flatten '(() (a b) (¢ d) ()) '"(a b c d))

Recall that:

;; A list-of-alpha is either:
b empty, or
HH (cons a aloa) where a is an alpha and aloa is a list-of-alpha

;; Template:

;; (define (£ ... aloa ...)

M (cond [(empty? aloa) ...]

M [(cons? Aloca) ... (first aloa)

H ... (£ ... (rest aloa) ...) ...1))

COMP 211, Spring 2009 8

M&W Defining £latten

;; Template Instantiation:
#1

(define (flatten aloloa)

(cond [(empty? aloloa) empty]
[(cons? aloloa) ... (first aloloa)
(flatten (rest aloloa)) ... 1))

| #
;; Code:
(define (flatten aloloa)

(cond [(empty? aloloa) empty]

[(cons? aloloa)

(append (first aloloa)
(flatten (rest aloloa)))]))

COMP 211, Spring 2009 9

Examples of Algebraic Data

Files on your computer
Simple File, or
Folder, which contains a list of Files

XML

Bareneral format for representing algebraic data as
ASCII text

Internet domain names
Natural numbers
Arithmetic expressions
Syntax trees

COMP 211, Spring 2009 10

Natural Numbers: Data definition

Standard definition from mathematics

;; A natural-number (N for short) is either
;; 0, or

;; (addl n)

;; where n is a natural-number

Comments:

In mathematics, addl is ususally called succ or S, for successor.

Principle of mathematical induction for the natural numbers is based on this
definition (using S for successor):

P(0), Ox [P(x) -> P(5(x))]

Ox P(x)

Is there an analogous induction principle for other forms of
inductively defined data? Yes!

COMP 211, Spring 2009 11

Examples and Basic Operations

Examples (using constructors)
Zero: 0
One: (addl 0)
Four: (addl (addl (addl (addl 0))))

Accessors:
subl : N -> N

Note: subl is typically called pred or P in mathematics; using
subl instead is a bit of a cheat because (subl 0) behaves
incorrectly.

Recognizers:
zero? : Any -> bool
positive?: Any -> bool ;; not addl?

COMP 211, Spring 2009 12

Basic Laws (Reductions) for Natural
Numbers

Recall the ones for lists:
For all elements v, and lists 1, we have

(empty? empty) = true ;; recognizer
(empty? (cons v 1)) = false
(rest (cons v 1)) =1 ;; accessor
(first (cons v 1)) = v
Basic laws:
For all natural numbers n, we have
(zero? 0) = true ;; recognizer

(zero? (addl n)) = false
(positive? (addl n)) = true
(positive? 0) = false

(subl (addl n)) = n ;; accessor

Similar rules exist for all inductively-defined data types
What about laws for (equal? ...)

COMP 211, Spring 2009 13

L&M Natural Numbers: Template

Template is very similar to lists:

;; £ : natural-number -> ..
;; (define (f n)

- (cond [(zero? n) ...]
;7 [(positive? n)
H ... (£ (subl n)) ...1))

COMP 211, Spring 2009 14

Example

Write a function that repeats a symbol s several (n) times

Examples

(repeat 'Rabbit 0) = empty

(repeat 'Rabbit (addl (addl 0))) =
(cons 'Rabbit (cons 'Rabbit empty))

Code:
;; repeat : symbol natural-number -> list-of-symbol
(define (repeat s n)
(cond [(zero? n) empty]
[(positive? n)
(cons s (repeat s (subl n)))]))

COMP 211, Spring 2009 15

L&M More Examples

add: N N -> N
multiply: N N -> N
factorial: N -> N

Defining and using familiar functions on
natural numbers helps us understand
structural recursion (our design template)

COMP 211, Spring 2009

16

Add

(define (add m n)

(cond

[(zero? m) n]
[(positive? m) (addl (add (subl m) n))]))

(define (right-add m n)
(cond
[(zero? n) m]
[(positive? n) (addl (right-add m (subl n)))]))

COMP 211, Spring 2009 17

Defining Integers

An integer is either:
0; or
(addl n) where n has the form 0 or (addl ..) [non-
negative]; or
(subl n) where n has the form 0 or (subl ..) [non-
positive].
Recognizers:
zero?: any -> bool
positive?: any -> bool
negative?: any -> bool
In Scheme, add1l and subl have been extended
to all integers by defining for all integers » :
(addl (subl n)) = n

(subl (addl n)) = n
COMP 211, Spring 2009 18

x«i«n For Next Class

- Homework due Friday
- Reading: Chs. 11-13

- Think about: what is the design

template (structural recursion scheme)
for integers? Hint: look at the inductive
definition of integers on slide 18.

COMP 211, Spring 2009 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

