
1

Trees

Corky Cartwright
Department of Computer Science
Rice University

COMP 211, Spring 2009 2

Today’s Goals

• Loose Ends
• Catching mistakes and raising errors
• and & or operations

• Trees
• Significantly more expressive type
• “Lists with many tails”

• Examples:
• Family tree
• Binary search tree

COMP 211, Spring 2009 3

Checked Contracts
• If we use type recognizers for every clause in a template, we can easily

add an error reporting clause so that ours functions that check the input
type (contract in HTDP terminology) for the primary argument.
Example:

(define (len aloa)
 (cond [(empty? aloa) 0]
 [(cons? aloa) (add1 (len (rest aloa)))]
 [else (error "length: expected <list>; given" aloa)]))

• Questions:
• Is error reporting a good idea.
• Should error behavior be documented?

• Answers to question are surprising subtle and lacking in consensus. In
the case above, it is probably a good idea but it is generally not done.
(DrScheme libraries perform these checks.)

COMP 211, Spring 2009 4

Error Reporting
• To report an error in Scheme invoke:

 (error msg v1 … vn)
where msg is a string enclosed in quotation marks and v1,
…, vn are arbitrary Scheme values.

• Error checking should be done:
• only where the overhead is tolerable;
• only in basic operations like data constructors when static type

checking does not already enforce the contract
• Introductory texts grossly over-promote error checking.

Excessive error-checking makes code ponderous.
• Error checking should not be included in a contract

(HTDP: purpose statement) unless the client code can
depend on it and use it (by "catching" the error). Java.

COMP 211, Spring 2009 5

Reductions for Errors
• First, note how errors work for functions you already

know. In any context
 (/ 1 0) => /: divide by zero

at top level. This is unique among our rules.
• The error construct generalizes this mechanism. /In any

context
 (error "Rabbit Late!") => Rabbit: Late!

at top level
• Use errors only as required by the problem or recipe
• Tip: in HWK, put hand evaluations in comments

COMP 211, Spring 2009 6

Error Reporting in Data Construction
• Constructing ill-formed data is a very serious

error. Why? Because the error generally won't be
discovered until the data is used, which may not
give any clue as to where it was created. Hence,
some extra error checking overhead is justified in
this situation.

• This issue is the subject of recent and ongoing
research. The problem is hard because the
requisite legality tests are parametric. Think about
the cons operations in append.

• In our programs, ignore this issue unless I raise it.

COMP 211, Spring 2009 7

Using and & or
• Scheme and abbreviates a conditional and takes an arbitrary

number of arguments (our student dialects require at least 2)
(and arg1 ... argn) abbreviates
(cond [(not arg1) false]
 ...
 [else argn])
Hence,
(and true true false true (zero? (/ 2 0)) ...)
=> false

• This behavior is called “short-circuit” or “non-strict
• What does or do?

(or arg1 ... argn) abbreviates
(cond [arg1 true]
 ...
 [else argn])

COMP 211, Spring 2009 8

and & or cont.
• What are the reduction rules (laws) for and?

• (and false ... argn) => false
• (and true arg2 ... argn) => (and arg2 ... argn)
• (and v) => v

• What are the reduction rules (laws) for or?
• (or true ... argn) => true
• (or false arg2 ... argn) => (or arg2 ... argn)
• (or v) => v

COMP 211, Spring 2009 9

Another Inductive Type: Trees
• Labeled trees
• Organizational charts
• Decision trees
• Search trees
and many more!

COMP 211, Spring 2009 10

From Lists to Trees
; A list-of-symbols (los for short) is
; empty, or
; (cons s l)
; where s is a symbol and l is a los

; A person is
; empty // Represents “unknown”
; (make-person n m d) // Two self-references
; where n is a symbol, and m and d are persons
(define-struct person (name mom dad))

COMP 211, Spring 2009 11

Example Tree

(make-person 'Bob
 (make-person 'Jane empty
 (make-person 'Tom
 (make-person 'Cat empty empty) empty))
 (make-person ’Rob empty
 (make-person ’Sue empty
 (make-person 'Ray empty
 (make-person ’Johny empty empty)))))

COMP 211, Spring 2009 12

Template for a Tree (1/3)
• We first test for which variety
 ; f : person -> …
 ; (define (f x)
 ; (cond
 ; [(empty? x) …]
 ; [else …

COMP 211, Spring 2009 13

Template for a Tree (2/3)
• We make sure that each field is available
 ; f : person -> …
 ; (define (f x)
 ; (cond
 ; [(empty? x) …]
 ; [else … (person-name x)
 ; … (person-mom x) …
 ; … (person-dad x) …)

COMP 211, Spring 2009 14

Template for a Tree (3/3)
• Recursion in type -> recursion in template
 ; f : person -> …
 ; (define (f x)
 ; (cond
 ; [(empty? x) …]
 ; [else … (person-name x)
 ; … (f (person-mom x))…
 ; … (f (person-dad x))…)

COMP 211, Spring 2009 15

Tree Depth (in class ex.)
• Consider the following problem

• “Given a person tree, compute the maximum
number of generations for which we know
something about this person.”

• Contract (or “type”) is
• person -> natural

• Examples (from above)
• Template?

COMP 211, Spring 2009 16

Tree Depth
 max-depth : person -> natural
 (define (max-depth x)
 (cond
 [(empty? x) 0]
 [else (+ 1
 (max (max-depth (person-mom x))
 (max-depth (person-dad x)))))

Examples were really helpful for filling in the code!

COMP 211, Spring 2009 17

Conventions for type definitions
• Our type definitions have a very specific

form. Does this definition fit in?
 ; A child node is (make-child f m na da ec)
 ; where f and m are either
 ; empty or
 ; child nodes

• Our convention:
• The new type is a variety of values (forms)
• The type of each field in each struct is a name

COMP 211, Spring 2009 18

Binary Search Trees

Which tree obeys a simple rule regarding the
ordering of node values?

COMP 211, Spring 2009 19

Binary Search Trees

; A binary-search-tree (BST) is either
; false, or
; (make-node n l r)
; where n is a number, l and r are BTs.
; Invariants:
; 1. Numbers in l are less than or equal to n
; 2. Numbers in r are greater than n
(define-struct node (num left right))

COMP 211, Spring 2009 20

For Next Class
• Homework due Monday

• Midterm:
• Wednesday, in class
• Chapters 1-13

• No quizzes until midterm

