
1

Mutually Referential Data Definitions

Corky Cartwright
Department of Computer Science
Rice University

COMP 210, Fall 2007 2

Announcements and Plan

• Homework due Thursday at 11am.
• Why? Monday is a holiday, so we cannot hold labs on

Monday.
• Monday labs moved to Wednesday; same time and place.

• Plan for today
• What is mutual referencing/recursion
• Simple and deep examples illustrating the

approach.

COMP 210, Fall 2007 3

Example of a Mutually Referential Data Definition

; Descendant trees
; A parent is a structure
; (make-parent loc n)
; where loc is a list-of-children,
; n is a symbol

; A list-of-children is either
; empty, or
; (cons p loc) where
; where p is a parent, and loc is a
list-of-children

COMP 210, Fall 2007 4

Terminology and Template
• Common terminology: mutually recursive

instead of mutually referential
• Writing one function on any of these types

requires writing a set of functions for all the
mutually recursive types

• Each reference to a mutually recursive type
in a definition corresponds to a different
recursive call to the appropriate function in
the corresponding template

COMP 210, Fall 2007 5

Template(s)
; A parent is a structure
; (make-parent n loc)
; where n is a symbol (the name of the

parent) and loc is a list-of-children,
(define-struct parent (name children))

; parent-fn: parent -> ...
; (define (fun-parent ... p ...)
; (... (parent-name p) ...
 ... (loc-fn (parent-children p)) ...))

COMP 210, Fall 2007 6

Templates, cont.
; A list-of-children is either
; empty, or
; (cons p loc) where
; where p is a parent and loc is a list-of-children
; fun-loc: list-of-children -> ...
; (define (loc-fn ... loc ...)
; (cond [(empty? loc) ...]
; [else
; ... (parent-fn ... (first loc) ...) ...
; ... (loc-fn ... (rest loc) ...) ...)]))

COMP 210, Fall 2007 7

Function calls in template(s)
• Mutually recursive calls are part of template

• Use of a mutually recursive type is just the
same as a recursive use of a type itself

• A set of mutually recursive type definitions is
really one big recursive type definition with
multiple parts and each part has a template

• The form of the function calls in the
template(s) is crucial for ensuring
termination

COMP 210, Fall 2007 8

More about termination
• For the inductive (self-referential) types we saw before

today, a recursive functions terminates if
• it handles the base case(s) cleanly, and
• ir only make recursive calls on substructures of its primary argument,
e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the same
• Example: Imagine a type box that can contain bags, and a type bag

that can contain boxes. Why does the template ensure termination?
• Any box will be bigger than any bag it contains
• Similarly for bags.
• No infinite descending chains of containment.

COMP 210, Fall 2007 9

Code
• Write a function that counts the people in a

descendant tree
; parent-count : parent -> natural
; children-count : list-of-children -> natural
(define (parent-count p)
 (add1 (children-count (parent-children p)))
(define (children-count aloc)
 (cond [(empty? aloc) 0]
 [else (+ (parent-count (first aloc)))
 (children-count (rest aloc)))]))

; Note: Mutual “defines” should be contiguous

COMP 210, Fall 2007 10

Another Example (Unix File System)
; A file is either:
; a rawFile, or
; a dir (short for directory)

; A dir is a structure
; (make-dir lonf) where lonf is a list-of-nFiles
(define-struct dir (nFiles))

; A list-of-nFiles is either:
; ...

; A nFile is a structure
; (make-nFile name f) where name is a symbol and f is a

file.
(define-struct nFile (name file))

COMP 210, Fall 2007 11

Template
; A file is either:
; a list-of-char, or
; a dir

; file-fun : f -> ...
(define (file-fun ... f ...)
 (cond [(rawFile? f) ...]
 [(dir? f) ...
 ... (dir-fun ... f ...)) ...]))

; A dir is
;(make-dir lonf) where lonf is a list-of-nFiles

; dir-fun : dir -> ...
(define (dir-fun ... d ...)
 ... (nFiles-fun ... (dir-nFiles d) ...) ...)

COMP 210, Fall 2007 12

Template cont.
; A list-of-nFiles is either:
; ...
(define (lonf-fun ... lonf ...)
 (cond [(empty? lonf) ...]
 [(cons? lonf) ...
 ... (nFile-fun ... (first lonf) ...) ...)
 ... (lonf-fun ... (rest lonf) ...) ...]))

; A nFile is a structure
; (make-nFile name f) where name is a symbol and f is a file.
(define (nFile-fun ... nf ...)
 ... (nFile-name nf) ...
 ... (file-fun ... (nFile-file nf) ...) ...)

COMP 210, Fall 2007 13

Example function on file system
; find?: dir symbol -> boolean
; Purpose: (find? d n) determines whether a file with name an

occurs in directory d.
; Instantiated template
#|
(define (find? d n) ... (nFiles-find? (dir-nFiles d) n) ...)

(define (nFiles-find? lonf n)
 (cond [(empty? lonf) ...]
 [(cons? lonf)
 ... (nFile-find? (first lonf) n) ...
 ... (nFiles-find? (rest lonf) n) ...]))

(define (nFile-find? nf n)
 ... (nFile-name nf) ...
 ... (file-find? (nFile-file nf) n) ...)

COMP 210, Fall 2007 14

Example function cont.
(define (find? d n) ... (nFiles-find? (dir-nFiles d) n) ...)

(define (nFiles-find? lonf n)
 (cond [(empty? lonf) ...]
 [(cons? lonf)
 ... (nFile-find? (first lonf) n) ...
 ... (nFiles-find? (rest lonf) n) ...]))

(define (nFile-find? nf n)
 ... (nFile-name nf) ...
 ... (nFile-find? (nFile-file nf) n) ...)

(define (file-find? f n)
 (cond [(rawFile? f) ...]
 [(dir? f) ... (find? f n) ...]))
|#

COMP 210, Fall 2007 15

Code
(define (find? d n) (nFiles-find? (dir-nFiles d) n))

(define (nFiles-find? lonf n)
 (cond [(empty? lonf) false]
 [(cons? lonf)
 (or (nFile-find? (first lonf) n)
 (nFiles-find? (rest lonf) n)]))

(define (nFile-find? nf n)
 (or (equal? (nFile-name nf) n)
 (file-find? (nFile-file nf) n))

(define (file-find? f n)
 (cond [(rawFile? f) false]
 [(dir? f) (find? f n)]))
|#

COMP 210, Fall 2007 16

For Next Class
• Homework deferred one day

• Labs:
• Don't forget Tuesday lab
• Monday labs meet Wednesday

