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Announcements and Plan

• Reminder: Homework 2 due Friday 
at 10 am.

• Plan for today
• What is a mutually inductive  data 

definition and corresponding recursion 
template

• Simple and deep examples illustrating 
the approach.
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A Sample Mutually Referential Data Definition

; Descendant trees
; A parent is a structure
;     (make-parent loc n)
; where loc is a list-of-children, 
;       n is a symbol

; A list-of-children is either
;     empty, or
;     (cons p loc) where 
; where p is a parent, and loc is a list-
of-children
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Terminology and Template
• Common terminology: mutually 

recursive instead of mutually 
referential

• Writing one function on any of these 
types requires writing a set of functions 
for all the mutually recursive types 

• Each reference to a mutually recursive 
type in a definition corresponds to a 
different recursive call to the appropriate 
function in the corresponding template
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Descendant Tree Templates
; A parent is a structure
;     (make-parent n loc)
; where n is a symbol (the name of the parent) and 

loc is a list-of-children, 
(define-struct parent (name children))

; parent-fn: parent -> ...
; (define (parent-fn ... p ...)
;   (... (parent-name p) ...
     ... 
       (loc-fn (parent-children ... p ...)) 
     ...))
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Templates, cont.
; A list-of-children is either
;     empty, or
;     (cons p loc) where 
; where p is a parent and loc is a list-of-children
; loc-fn: list-of-children -> ...
; (define (loc-fn ... loc ...)
;  (cond [(empty? loc) ...]
;        [else
;          ... (parent-fn ... (first loc) ...) ... 
;          ... (loc-fn ... (rest loc) ...) ...)]))
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Function calls in templates
• Mutually recursive calls are part of template

• Use of a mutually recursive type is just the same 
as a recursive use of a type itself

• A set of mutually recursive type definitions is 
really one big recursive type definition with 
multiple parts and each part has a template

• The form of the function calls in the 
template(s) is crucial for ensuring termination
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More about termination
• For the inductive (self-referential) types we saw 

before today, a recursive functions terminates if
• it handles the base case(s) cleanly, and
• ir only make recursive calls on substructures of its 

primary argument, e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the 
same

• Example:  Imagine a type box that can contain bags, and 
a type bag that can contain boxes.  Why does the 
template ensure termination?

• Any box will be bigger than any bag it contains
• Similarly for bags. 
• No infinite descending chains of containment.
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Code
• Write a function that counts the people in 

a descendant tree
; parent-count : parent -> natural
; children-count : list-of-children -> natural
(define (parent-count p)
  (add1 (children-count (parent-children p)))
(define (children-count aloc)
  (cond [(empty? aloc) 0]
        [else (+ (parent-count (first aloc))) 
                 (children-count (rest aloc)))]))

; Note:  Mutual “defines” should be contiguous
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Another Example (Unix File System)
; A file is either:
;   a raw-file, or
;   a dir (short for directory)

; A dir is a structure
; (make-dir lonf) where lonf is a list-of-namedFile
(define-struct dir (namedFiles))

; A list-of-nFile is ...

; A namedFile is a structure
; (make-namedFile name f) where name is a symbol and f 

is a file.
(define-struct namedFile (name file))
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Templates
; A file is either:
;   a raw-file, or
;   a dir

; file-fn : file -> ... 
(define (file-fn ... f ...)
  (cond [(raw-file? f) ...] ; process raw file
        [(dir? f) ... 
         ... (dir-fn ... f ...)) ... ]))

; A dir is 
;(make-dir lonf) where lonf is a list-of-namedFiles

; dir-fn : dir -> ...
(define (dir-fn ... d ...)
   ... (namedFiles-fn ... (dir-namedFiles d) ...) ... )
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Templates cont.
; A list-of-namedFiles is either:
; ...
(define (lonf-fn ... lonf ... )
  (cond [(empty? lonf) ... ]
        [(cons? lonf) ...
         ... (namedFile-fn ... (first lonf) ... ) ... )
         ... (lonf-fn ... (rest lonf) ...) ... ]))

; A namedFile is a structure
; (make-namedFile name f) where name is a symbol and f is a 

file.
(define (namedFile-fn ... nf ...)
  ... (namedFile-name nf) ...
  ... (file-fn ... (namedFile-file nf) ... ) ... )
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Example function on file system
; find?: dir symbol -> boolean
; Purpose: (find? d n) determines whether a file with name n
  occurs in directory d.
; Instantiated template

(define (find? d n) ... (nFiles-find? (dir-nFiles d) n) ... )

(define (nFiles-find? lonf n)
  (cond [(empty? lonf) ...]
        [(cons? lonf) 
         ... (nFile-find? (first lonf) n)
         ... (nFiles-find? (rest lonf) n) ... ]))

(define (nFile-find? nf n)
  ... (nFile-name nf) ... 
  ... (file-find? (nFile-file nf) n) ... )
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Example function cont.
(define (nFiles-find? lonf n)
  (cond [(empty? lonf) ...]
        [(cons? lonf) 
         ... (nFile-find? (first lonf) n) ...
         ... (nFiles-find? (rest lonf) n) ... ]))

(define (nFile-find? nf n)
  ... (nFile-name nf) ... 
  ... (nFile-find? (nFile-file nf) n) ... )

(define (file-find? f n)
  (cond [(rawFile? f) ... ]
        [(dir? f) ... (find? f n) ... ]))
|#
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Code
(define (find? d n) (nFiles-find? (dir-nFiles d) n))

(define (nFiles-find? lonf n)
  (cond [(empty? lonf) false]
        [(cons? lonf) 
         (or (nFile-find? (first lonf) n)
             (nFiles-find? (rest lonf) n)]))

(define (nFile-find? nf n)
  (or (equal? (nFile-name nf) n) 
      (file-find? (nFile-file nf) n))

(define (file-find? f n)
  (cond [(rawFile? f) false]
        [(dir? f) (find? f n)]))
|#
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For Next Class
• Attend lab and start on homework
• Read assigned portions of HTDP.
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