
 1

Mutually Referential Data Definitions

Corky Cartwright
Department of Computer
Science
Rice University

COMP 211, Spring 2010 2

Announcements and Plan

• Reminder: Homework 2 due Friday
at 10 am.

• Plan for today
• What is a mutually inductive data

definition and corresponding recursion
template

• Simple and deep examples illustrating
the approach.

COMP 211, Spring 2010 3

A Sample Mutually Referential Data Definition

; Descendant trees
; A parent is a structure
; (make-parent loc n)
; where loc is a list-of-children,
; n is a symbol

; A list-of-children is either
; empty, or
; (cons p loc) where
; where p is a parent, and loc is a list-
of-children

COMP 211, Spring 2010 4

Terminology and Template
• Common terminology: mutually

recursive instead of mutually
referential

• Writing one function on any of these
types requires writing a set of functions
for all the mutually recursive types

• Each reference to a mutually recursive
type in a definition corresponds to a
different recursive call to the appropriate
function in the corresponding template

COMP 211, Spring 2010 5

Descendant Tree Templates
; A parent is a structure
; (make-parent n loc)
; where n is a symbol (the name of the parent) and

loc is a list-of-children,
(define-struct parent (name children))

; parent-fn: parent -> ...
; (define (parent-fn ... p ...)
; (... (parent-name p) ...
 ...
 (loc-fn (parent-children ... p ...))
 ...))

COMP 211, Spring 2010 6

Templates, cont.
; A list-of-children is either
; empty, or
; (cons p loc) where
; where p is a parent and loc is a list-of-children
; loc-fn: list-of-children -> ...
; (define (loc-fn ... loc ...)
; (cond [(empty? loc) ...]
; [else
; ... (parent-fn ... (first loc) ...) ...
; ... (loc-fn ... (rest loc) ...) ...)]))

COMP 211, Spring 2010 7

Function calls in templates
• Mutually recursive calls are part of template

• Use of a mutually recursive type is just the same
as a recursive use of a type itself

• A set of mutually recursive type definitions is
really one big recursive type definition with
multiple parts and each part has a template

• The form of the function calls in the
template(s) is crucial for ensuring termination

COMP 211, Spring 2010 8

More about termination
• For the inductive (self-referential) types we saw

before today, a recursive functions terminates if
• it handles the base case(s) cleanly, and
• ir only make recursive calls on substructures of its

primary argument, e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the
same

• Example: Imagine a type box that can contain bags, and
a type bag that can contain boxes. Why does the
template ensure termination?

• Any box will be bigger than any bag it contains
• Similarly for bags.
• No infinite descending chains of containment.

COMP 211, Spring 2010 9

Code
• Write a function that counts the people in

a descendant tree
; parent-count : parent -> natural
; children-count : list-of-children -> natural
(define (parent-count p)
 (add1 (children-count (parent-children p)))
(define (children-count aloc)
 (cond [(empty? aloc) 0]
 [else (+ (parent-count (first aloc)))
 (children-count (rest aloc)))]))

; Note: Mutual “defines” should be contiguous

COMP 211, Spring 2010 10

Another Example (Unix File System)
; A file is either:
; a raw-file, or
; a dir (short for directory)

; A dir is a structure
; (make-dir lonf) where lonf is a list-of-namedFile
(define-struct dir (namedFiles))

; A list-of-nFile is ...

; A namedFile is a structure
; (make-namedFile name f) where name is a symbol and f

is a file.
(define-struct namedFile (name file))

COMP 211, Spring 2010 11

Templates
; A file is either:
; a raw-file, or
; a dir

; file-fn : file -> ...
(define (file-fn ... f ...)
 (cond [(raw-file? f) ...] ; process raw file
 [(dir? f) ...
 ... (dir-fn ... f ...)) ...]))

; A dir is
;(make-dir lonf) where lonf is a list-of-namedFiles

; dir-fn : dir -> ...
(define (dir-fn ... d ...)
 ... (namedFiles-fn ... (dir-namedFiles d) ...) ...)

COMP 211, Spring 2010 12

Templates cont.
; A list-of-namedFiles is either:
; ...
(define (lonf-fn ... lonf ...)
 (cond [(empty? lonf) ...]
 [(cons? lonf) ...
 ... (namedFile-fn ... (first lonf) ...) ...)
 ... (lonf-fn ... (rest lonf) ...) ...]))

; A namedFile is a structure
; (make-namedFile name f) where name is a symbol and f is a

file.
(define (namedFile-fn ... nf ...)
 ... (namedFile-name nf) ...
 ... (file-fn ... (namedFile-file nf) ...) ...)

COMP 211, Spring 2010 13

Example function on file system
; find?: dir symbol -> boolean
; Purpose: (find? d n) determines whether a file with name n
 occurs in directory d.
; Instantiated template

(define (find? d n) ... (nFiles-find? (dir-nFiles d) n) ...)

(define (nFiles-find? lonf n)
 (cond [(empty? lonf) ...]
 [(cons? lonf)
 ... (nFile-find? (first lonf) n)
 ... (nFiles-find? (rest lonf) n) ...]))

(define (nFile-find? nf n)
 ... (nFile-name nf) ...
 ... (file-find? (nFile-file nf) n) ...)

COMP 211, Spring 2010 14

Example function cont.
(define (nFiles-find? lonf n)
 (cond [(empty? lonf) ...]
 [(cons? lonf)
 ... (nFile-find? (first lonf) n) ...
 ... (nFiles-find? (rest lonf) n) ...]))

(define (nFile-find? nf n)
 ... (nFile-name nf) ...
 ... (nFile-find? (nFile-file nf) n) ...)

(define (file-find? f n)
 (cond [(rawFile? f) ...]
 [(dir? f) ... (find? f n) ...]))
|#

COMP 211, Spring 2010 15

Code
(define (find? d n) (nFiles-find? (dir-nFiles d) n))

(define (nFiles-find? lonf n)
 (cond [(empty? lonf) false]
 [(cons? lonf)
 (or (nFile-find? (first lonf) n)
 (nFiles-find? (rest lonf) n)]))

(define (nFile-find? nf n)
 (or (equal? (nFile-name nf) n)
 (file-find? (nFile-file nf) n))

(define (file-find? f n)
 (cond [(rawFile? f) false]
 [(dir? f) (find? f n)]))
|#

COMP 211, Spring 2010 16

For Next Class
• Attend lab and start on homework
• Read assigned portions of HTDP.

	Mutually Referential Data Definitions
	Announcements and Plan
	Example of a Mutually Referential Data Definition
	Terminology and Template
	Template(s)
	Templates, cont.
	Function calls in template(s)
	More about termination
	Code
	Another Example (Unix File System)
	Template
	Template cont.
	Example function on file system
	Example function cont.
	Slide 15
	For Next Class

