
1

Local definitions and lexical scope

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Issues in HW1
• Follow the instructions in HW Guide,

particularly the Requirements for programs
• Hand-evaluation:

• Missing/combined steps: exactly one reduction per
step

• repeated step (only happens in trivial infinite loop)
• some cond rules eliminate a question-answer pair,

which is a reduction step

COMP 211, Spring 2009 3

Issues in HW1 cont.
• Follow the instructions in HW Guide …

• Programming
• Include every inductive data definition (including whatever forms

of lists you my use) as a comment.
• Data definition (other than a trivial struct) includes the template for

processing that form of data and examples of the data.
• All function defintions (including auxiliary/help functions) must

be preceded by the (type) contract, purpose statement,
examples (which will be used for testing), and the template
instantiation (which customizes the function name and the form of
recursive calls).

• In some cases the template instantiation is degenerate (e.g., the
definitions of area-of-ring or average-price):

• (define (average-price lon) ...)

COMP 211, Spring 2009 4

Issues in HW1 cont.
• Follow the instructions in HW Guide …

• Programming …
• Follow the examples in the HW Guide and use the same

formatting.
• Devise a representative set of tests. Focus on different possible

cases in small examples including obvious boundary cases.
Typically, at least 5 examples are necessary for reasonable
"coverage".

• DO NOT test for errors that are inconsistent with the input type!
• Extraneous error testing makes code ugly, hard to understand
• Computationallly wasteful
• Inhibits code factoring (polymorphism), e.g. how-many-symbols,
how-many-numbers

COMP 211, Spring 2009 5

• BNF Syntax (cryptic inductive definition) for local
• exp ::= …| (local (def1 def2 … defn) exp)
• def ::= (define var exp) | (define (var1 var2 … varn) exp)

In many contexts, the names of syntactic
categories are enclosed in pointy brackets rather
than italicized, e.g. <var> instead of var

• Simple examples
• (define x 3) ;; Top-level variable definition
• (define (f x) (+ x 1)) ;; Top-level function definition
• (define-struct entry (name zip phone)) ;; Structure definition

Definition

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 6

• Simple examples
• (define x 3)
• (local ((define x 3)) (+ x 1))
• (define (f x) (+ x 1))
• (local ((define x 3) ;; local definition

 (define (f x) (+ x 1))) ;; local definition
(f x)) ;; body

• (+ (local ((define x 3) (define (f x) (+ x 1))) (f x)) 1)
;; local-expression as part of another expression

Definition

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 7

Definition
• Whatʼs wrong with following expressions?

• (local ((define x 1)))
• (local ((define x 1)

(define x 2))
x)

• (local ((define x 1)
 (define f (+ x 1)))
 (f x))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 8

Why local?
• Reason 1: Avoid namespace pollution

;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)

 ;; sort: list-of-numbers -> list-of-numbers
(local ((define (sort alon)

(cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon)

 (sort (rest alon)))]))
 ;; insert: number list-of-numbers (sorted) -> list-of numbers
 (define (insert an alon)

(cond
 [(empty? alon) (list an)]
 [else (cond

[(> an (first alon)) (cons an alon)]
[else (cons (first alon)

 (insert an (rest alon)))])])))
 (sort alon)))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 9

Why local?
• Reason 1: Avoid namespace pollution

;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)

(local
 (;; insert: number list-of-numbers (sorted) -> list-of numbers

 (define (insert an alon)
 (cond

 [(empty? alon) (list an)]
 [else (cond

 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon) (insert an (rest alon)))])])))
 (cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 10

• Reason 1: Avoid namespace pollution
 (define (main_fun x) exp)
 (define (aux_fun1 …) exp1)
 (define (aux_fun2 …) exp2)

Why local?

(define (main_fun x)
(local ((define (main_fun x) exp)

 (define (aux_fun1 …) exp1)
 (define (aux_fun2 …) exp2))

 (main_fun x))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 11

Why local?
• Reason 2: Avoid repeated computation

;; last-occurrence: number list-of-posn -> number or false
;; (last-occurrence x lop) returns y such that (make-posn x y)
;; is the last posn p in lop with (posn-x p) = x
;; returns “false” if no such posn is found.
(define (last-occurrence x lop)

(cond
 [(empty? lop) …]
 [else … (first lop) … (last-occurrence x (rest lop))…]))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 12

• (last-occurrence x lop)
• lop = empty

• (last-occurrence x lop) = ?

• lop = cons((make-posn x’ y’) lop-rest)
• (last-occurrence x lop-rest) = y ;; y is a number

• (last-occurrence x lop) = ?
• (last-occurrence x lop-rest) = false and x’ = x

• (last-occurrence x lop) = ?
• (last-occurrence x lop-rest) = false and x’ != x

• (last-occurrence x lop) = ?

COMP 211, Spring 2009 13

Why local?
• Reason 2: Avoid repeated computation

(define (last-occurrence x lop)
(cond

 [(empty? lop) false]
 [else
 (cond
 [(number? (last-occurrence x (rest lop)))
 (last-occurrence x (rest lop))]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false])]))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 14

• Reason 2: Avoid repeated computation
(define (last-occurrence x lop)

(cond
 [(empty? lop) false]
 [else
 (cond
 [(number? (last-occurrence x (rest lop)))
 (last-occurrence x (rest lop))]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false])]))

Why local?

Definition Why Local Variables and Scope Renaming

repeated work

COMP 211, Spring 2009 15

• Reason 2: Avoid repeated computation
(define (last-occurrence x lop)

(cond
 [(empty? lop) false]
 [else (local ((define y (last-occurrence x (rest lop))))
 (cond
 [(number? y) y]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false]))]))

Why local?

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 16

Why local?
• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers
;; creates a list of numbers by multiplying each digit in alod
;; by (expt 10 p) where p is the number of digits that follow
;; This is bad code used only as an example. Good code
;; requires refacotring techniques we haven't learned yet.
(define (mult10 alod)
 (cond
 [(empty? alod) empty]
 [else (cons (* (expt 10 (length (rest alod))) (first alod))

 (mult10 (rest alod)))]))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 17

Why local?
• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers
;; creates a list of numbers by multiplying each digit on alod
;; by (expt 10 p) where p is the number of digits that follow
(define (mult10 alod)
 (cond
 [(empty? alod) 0]
 [else (local ((define a-digit (first alod))

 (define the-rest (rest alon))
 (define p (length the-rest)))

 (cons (* (expt 10 p) a-digit) (mult10 the-rest))]))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 18

Variables and Scope
• Example:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))
 (f5 answer6))

• Variable occurrences: 1-6
• Binding (or defining) occurrences: 1,2,3
• Use occurrences: 4,5,6

• Scopes:
• 1:?
• 2:?
• 3:?

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 19

Variables and Scope
• Recall:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))
• Variable occurrences: 1-6

• Binding (or defining) occurrences: 1,2,3
• Use occurrences: 4,5,6

• Scopes:
• 1: (all of local expression)
• 2: (all of local expression)
• 3: (+1 x)

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 20

Variables and Scope
• What will g evaluate to?

• (define x 0)
(define f x)
(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 21

Variables and Scope
• What will g evaluate to?

• (define x 0)
(define f x)
(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 22

Variables and Scope
• What will g evaluate to?

• (define x 0)
(define f x)
(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 23

Variables and Scope
• What will “g” evaluate to?

• (define x 0)
(define f x)
(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 24

Renaming
• Recall:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))
 (f5 answer6))

• Which variables can be renamed?
• Use the same name for “binding occurrence” and “use occurrence”

• (local ((define answer 42)
 (define (f x) (+ 1 x)))
 (f answer))

• What name choices can be used? Any name that does not clash with
variable names already visible in same scope. A “fresh” variable
name.

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 25

Renaming
• Recall:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))
 (f5 answer6))

• Which variables can be renamed?
• Use the same new name for “binding occurrence”

and “use occurrences”
• (local ((define answer' 42)
 (define (f x) (+ 1 x)))
 (f answer'))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 26

Renaming
• Recall:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))
 (f5 answer6))

• Which variables can be renamed?
• Use the same name for “binding occurrence” and

“use occurrence”
• (local ((define answer 42)
 (define (f' x) (+ 1 x)))
 (f' answer))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 27

Renaming
• Recall:

• (local ((define answer1 42)
 (define (f2 x3) (+ 1 x4)))
 (f5 answer6))

• Which variables can be renamed?
• Use the same name for “binding occurrence” and

“use occurrence”
• (local ((define answer 42)
 (define (f x') (+ 1 x')))
 (f answer))

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 28

Evaluation Laws (bonus material)
• How do we (hand) evaluate Scheme programs with local?
• By lifting local definitions to the top level and renaming all of

the variables that they introduce (for which they create
binding occurrences) with fresh names to avoid any collisions
with variables already defined at the top level.

• To express these laws we need a new format for expressing
rules. Why? Because promoting local constructs revises the
set of definitions that constitute the environment in which
evaluation takes place.

• New format: we evaluate a sequence of define forms
followed by an expression (which we formerly called the
program application) which yields the answer for the
computation.

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 29

Evaluation Laws (bonus)
• To simplify formalizing semantics of local, we need to

introduce new notation for functions which is explained in
more depth in Lectures 9-10. A function value is (lambda (x1 ...
xn) M) where x1 ... xn are variables and M is an expression. Note
that we are defining a new form of value.

• The form (define (y x1 .. xn) M) where y x1 .. xn are variables and
M is an expression abbreviates (define y (lambda (x1 ... xn) M)).

• A define form (define y M) is reduced iff M is a value.
• A program suite is:

 (define y1 M1) ... (define yn Mn) M
where y1 ... yn are variables and M1 ... Mn M are expressions.

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 30

Revised Evaluation Laws cont.

• Our revised rewriting semantics explains how to
evaluate program suites. All of our former laws,
specifying reductions (the rewriting of program
text) still apply with two revisions/exceptions.

• The law for reducing the application of a program-
defined function f to values does not use a “given”
program; it looks up the value of f in the list of define
forms preceding the application in the program suite.
If no such value exists, the application is a run-time
error.

• The law for reducing error applications will be given
along with the law for evaluating local.

• We need to introduce another definition first.

COMP 211, Spring 2009 31

Evaluation Laws (bonus)
• An evaluation context E is either:

• [] (called "hole")
• (p V1 ... Vm E M1 ... Mn)
• ((lambda (x1 ... xk) M) V1 ... Vm E M1 ... Mn)
• (cond (E M) ...)
• (local (R1 ... Rm (define y E) D1 ... Dn) M)

• where p is a primitive function symbol; V1 ... Vm
are values; M1 ... Mn are expressions; x1 ... xk y are
variables; R1 ... Rm are reduced define forms; and
D1 ... Dn are define forms.

•

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 32

Evaluation Laws cont.
• If E is an evaluation context and M is an expression, E[M]

denotes E with the hole replaced by M.
• The revised law for error is
• R1 ... Rm E[(error v1 v2)] D1 ... Dn =>

error: sym string

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 33

Evaluation Laws cont.
• R1 ... Rm

E[(local ((define v1 M1 ... (define vn Mn)) M)]
D1 ... Dn M

 =>

D1 ... Dm
(define v1' M1')
 ...
(define vn' Mn')
E[M']
D1 ... Dn M

Definition Why Local Variables and Scope Renaming

COMP 211, Spring 2009 34

For Next Class
• Homework due on Friday

• Potential additions/updates
• Reading:

• Ch 18: Local Definitions and Lexical Scope
• Ch 19: Similarities in definition (and

“refactoring”)

