
1

Local definitions and lexical scope

Corky Cartwright
Vivek Sarkar

Department of Computer
Science

Rice University

Top-Level Definitions
• We have learned three kinds of definitions thus

far:
1. Function definitions e.g.,

(define (f x) (+ x 1))

1. Variable (constant) definitions e.g.,
(define two (f 1))

1. Structure definitions e.g.,
(define-struct cmplx (real imag))

• They appear in Dr. Scheme’s Definitions
window and are called top-level definitions

COMP 211, Spring 2010

Local Expression
• A local expression groups together a set of disjoint

definitions for use in a subcomputation:

(local (def1 def2 … defn) exp)

• exp is an arbitrary expression

• defi is a definition in the set

• defi is only available for use within the local expression i.e., within
def1 def2 … defn and exp

COMP 211, Spring 2010

(define x 3) ;; top-level definition

(local ((define x 3)) (+ x 1)) ;; local expression

(define (f x) (+ x 1)) ;; top-level definition

(local ((define x 3) ;; local definition

 (define (f x) (+ x 1))) ;; local definition

 (f x)) ;; body

(+ (local ((define x 3) (define (f x) (+ x 1))) (f x)) 1)

;; local-expression as part of another expression

COMP 211, Spring 2010 4

Simple Examples

COMP 211, Spring 2010 5

Some Incorrect Examples
• What’s wrong with following expressions?

• (local ((define x 1)))
• (local ((define x 1)

 (define x 2))
 x)

• (local ((define x 1)

 (define f (+ x 1)))
 (f x))

COMP 211, Spring 2010 6

Why local?
Reason 1: Avoid namespace pollution
;; sort: list-of-numbers -> list-of-numbers
;; sort: list-of-numbers -> list-of-number
(define (sort alon)
 (cond

[(empty? alon) empty]
 [(cons? alon) (insert (first alon)(sort (rest alon)))]))

;; insert: number list-of-numbers (sorted) -> list-of number
;; auxiliary function for sort
(define (insert an alon)
 (cond

[(empty? alon) (list an)]
[else (cond [(> an (first alon)) (cons an alon)]

 [else (cons (first alon)
 (insert an (rest alon)))])]))

COMP 211, Spring 2010 7

Why local?
• Reason 1: Avoid namespace pollution (contd)
;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)

(local
 (;; insert: number list-of-numbers (sorted) -> list-of numbers

 (define (insert an alon)
 (cond

 [(empty? alon) (list an)]
 [else (cond

 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon)
(insert an (rest alon)))])])))

(cond

 [(empty? alon) empty]

 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

COMP 211, Spring 2010 8

Reason 1: Avoid namespace pollution

(define (mainFun x) exp)
(define (auxFun1 ...) exp1)
(define (auxFun2 ...) exp2)

Why local?

(define (mainFun x)
(local ((define (mainFun x) exp)

 (define (auxFun1 …) exp1)

 (define (auxFun2 …) exp2))

 (mainFun x))

COMP 211, Spring 2010 9

Why local?

• Reason 2: Avoid repeated computation
;; last-occurrence: number list-of-posn -> number or false

;; (last-occurrence x lop) returns y such that (make-posn x y)

;; is the last posn p in lop with (posn-x p) = x;

;; returns “false” if no such posn is found.

(define (last-occurrence x lop)

(cond

 [(empty? lop) ...]

 [else ... (first lop)

 ... (last-occurrence x (rest lop)) ...]))

COMP 211, Spring 2010 10

Why local?
• Reason 2: Avoid repeated computation
(define (last-occurrence x lop)

(cond
 [(empty? lop) false]
 [else
 (cond
 [(number? (last-occurrence x (rest lop)))
 (last-occurrence x (rest lop))]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false])]))

COMP 211, Spring 2010 11

• Reason 2: Avoid repeated computation

(define (last-occurrence x lop)
(cond
 [(empty? lop) false]
 [else
 (cond
 [(number? (last-occurrence x (rest lop)))
 (last-occurrence x (rest lop))]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false])]))

Why local?

repeated work

COMP 211, Spring 2010 12

• Reason 2: Avoid repeated computation

(define (last-occurrence x lop)
(cond
 [(empty? lop) false]
 [else (local ((define y (last-occurrence x (rest lop))))
 (cond
 [(number? y) y]

 [(equal? (posn-x (first lop)) x) (posn-y (first lop))]
 [else false]))]))

Why local?

COMP 211, Spring 2010 13

Why local?
• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers
;; creates a list of numbers by multiplying each digit in alod
;; by (expt 10 p) where p is the number of digits that follow
;; This is bad code used only as an example. Good code
;; requires refactoring techniques we haven't learned yet.
(define (mult10 alod)
 (cond
 [(empty? alod) empty]
 [else (cons (* (expt 10 (length (rest alod))) (first alod))
 (mult10 (rest alod)))]))

COMP 211, Spring 2010 14

Why local?
• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers
;; creates a list of numbers by multiplying each digit on alod
;; by (expt 10 p) where p is the number of digits that follow
(define (mult10 alod)
 (cond
 [(empty? alod) 0]
 [else (local ((define a-digit (first alod))

 (define the-rest (rest alon))
 (define p (length the-rest)))

 (cons (* (expt 10 p) a-digit) (mult10 the-rest))]))

Recap of Variable Scopes
from COMP 140

COMP 211, Spring 2010
Source: http://www.clear.rice.edu/comp140/labs/lab05/

COMP 211, Spring 2010 16

Variables and Scope in
Scheme
• Example:

• (local ((define answer1 42)

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))

• Variable occurrences: 1-6
• Binding (or defining) occurrences: 1,2,3
• Use occurrences: 4,5,6
• Scope = code region where a definition may be used

• Scopes of definitions
• 1:?
• 2:?
• 3:?

COMP 211, Spring 2010 17

Variables and Scope
• What will g evaluate to?

(define x 0)
(define f x)
(define g (local ((define x 1)) f))

COMP 211, Spring 2010 18

Renaming
• Recall:

• (local ((define answer1 42)

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))
• Which variables can be renamed within the local expression?
• Use the same name for “binding occurrence” and all its “use

occurrences”
• (local ((define answer 42)

 (define (f x) (+ 1 x)))
 (f answer))
• What name choices can be used? Any name that does not

clash with variable names already visible in same scope. A
“fresh” variable name.

COMP 211, Spring 2010 19

Renaming
• Recall:

• (local ((define answer1 42)

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))

• Which variables can be renamed?
• Use the same new name for “binding

occurrence” and “use occurrences”
• (local ((define answer' 42)

 (define (f x) (+ 1 x)))
 (f answer'))

COMP 211, Spring 2010 20

Renaming
• Recall:

• (local ((define answer1 42)

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))

• Which variables can be renamed?
• Use the same name for “binding

occurrence” and “use occurrence”
• (local ((define answer 42)

 (define (f' x) (+ 1 x)))
 (f' answer))

COMP 211, Spring 2010 21

Renaming
• Recall:

• (local ((define answer1 42)

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))

• Which variables can be renamed?
• Use the same name for “binding

occurrence” and “use occurrence”
• (local ((define answer 42)

 (define (f x') (+ 1 x')))
 (f answer))

COMP 211, Spring 2010 22

Hand Evaluation of Local
Expressions

• How do we (hand) evaluate Scheme programs
with local?

• By lifting local definitions to the top level and
renaming all of the variables that they introduce
with fresh names to avoid any collisions with
variables already defined at the top level.

• To express these laws we need a new format for
expressing rules. Why? Because promoting local
constructs revises the set of definitions that
constitute the environment in which evaluation
takes place.

(define x 2) ;; top-level definition

;; local-expression as part of another expression

(+ (local ((define x 3) (define (f x) (+ x 1))) (f x)) 1)

=> ???

COMP 211, Spring 2010 23

Hand Evaluation Example

When naming can cause
problems

Romeo, Romeo! wherefore art thou
Romeo?
. . .
What's in a name? That which we call a
roseBy any other name would smell as
sweet.

Romeo and Juliet (II, ii)
COMP 211, Spring 2010

	Local definitions and lexical scope
	Top-Level Definitions
	Local Expression
	Simple Examples
	Some Incorrect Examples
	Why local?
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Recap of Variable Scopes from COMP 140
	Variables and Scope in Scheme
	Variables and Scope
	Renaming
	Slide 19
	Slide 20
	Slide 21
	Hand Evaluation of Local Expressions
	Hand Evaluation Example
	When naming can cause problems

