
1

Local definitions and lexical scope

Corky Cartwright
Vivek Sarkar

Department of Computer
Science

Rice University

Top-Level Definitions
We have learned three kinds of definitions
thus far:
1. Function definitions, e.g.,

 (define (f x) (+ x 1))
2. Variable (constant) definitions, e.g.,

(define two (f 1))

3. Structure definitions, e.g.,
(define-struct pair (left right))

They appear in Dr. Scheme’s Definitions
window and are called top-level definitions

COMP 211, Spring 2010

 Local Expressions

A local expression groups together a set
of definitions for use in a subcomputation:
 (local (def1 def2 … defn) exp)

• exp is an arbitrary expression

• defi is a definition in the set

• the variables defined in def1 def2 … defn

are distinct and only exist (are available for
use) within the local expression i.e., within
def1 def2 … defn and exp

COMP 211, Spring 2010

(define x 3) ;; top-level definition

(local [(define x 3)] (+ x 1)) ;; local expression

(define (f x) (+ x 1)) ;; top-level definition

(local [(define x 2) ;; local definitions

 (define (f x) (+ x 1))]

(f x)) ;; body

(+ (local [(define x 3) ;; embedded local-expression

 (define (f x) (+ x 1))]

 (f x))

 1)

COMP 211, Spring 2010 4

Simple Examples

COMP 211, Spring 2010 5

Some Incorrect Examples

• What’s wrong with following expressions?
 (local [(define x 1)])
 (local [(define x 1)

 (define x 2)]
 x)

 (local [(define x 1)
 (define f (+ x 1))]
 (f x))

COMP 211, Spring 2010 6

 Why local?
Reason 1: Avoid namespace pollution;
 sort: list-of-numbers -> list-of-n
;; sort: list-of-numbers -> list-of-number
;; (sort lon) returns the elements of lon is ascending order
(define (sort alon)
 (cond

[(empty? alon) empty]
 [(cons? alon) (insert (first alon)(sort (rest alon)))]))

;; insert: number list-of-numbers (sorted) -> list-of number
;; (insert n lon) assumes lon is in ascending order and returns a
;; a list containing n and the elements of lon in ascending order

(define (insert an alon)
 (cond [(empty? alon) (list an)]
 [else (if (<= an (first alon))
 (cons an alon)]
 (cons (first alon) (insert an (rest alon))))]))

COMP 211, Spring 2010 7

 Why local?
• Reason 1: Avoid namespace pollution (cont.)

;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)

 (local
 [;; insert: number list-of-numbers (sorted) -> list-of numbers
 (define (insert an alon)
 (cond [(empty? alon) (list an)]
 [else (if (<= an (first alon))
 (cons an alon)]
 (cons (first alon)
 (insert an (rest alon))))]))]

 (cond [(empty? alon) empty]

 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

COMP 211, Spring 2010 8

Reason 1: Avoid namespace pollution

(define (mainFun x) exp)
(define (auxFun1 ...) exp1)
(define (auxFun2 ...) exp2)

 Why local?

(define (mainFun x)

 (local [(define (minFun x) exp)
 (define (auxFun1 …) exp1)

 (define (auxFun2 …) exp2)]

 (mainFun x))

COMP 211, Spring 2010 9

 Why local?

Reason 2: Avoid repeated computation
;; max-num: list-of-number -> number

;; (max=num lon) returns the largest number n in lon;

;; throws an error if lon is empty

(define (max-num x lon)

 (cond

 [(empty? Lop) …]

 [else ... (first lon)

 ... (max-num x (rest lon)) ...]))

COMP 211, Spring 2010 10

 Why local?

Reason 2: Avoid repeated computation

(define (max-num lon)
(cond

 [(empty? Lon)
 (error “max-num applied to empty list”)
 [else
 (if (>= (first lon) (max-num (rest lon))
 (first lon)
 (max-num (rest lon)))]))

repeated work

COMP 211, Spring 2010 11

Reason 2: Avoid repeated computation

(define (max-num lon)
 (cond
 [(empty? Lon)
 (error “max-num applied to empty list”)
 [else
 (local [(define rest-max (max-num (rest lon))]
 (if (> (first lon) rest-max)
 (first lon)
 rest-max))]))

 Why local?

COMP 211, Spring 2010 13

Why local?
Reason 3: Naming complicated expressions
;; mult10 : list-of-digits -> list-of-numbers

;; creates a list of numbers by multiplying each digit in alod

;; by (expt 10 p) where p is the number of digits that follow

;; This is bad code used only as an example. Good code

;; requires refactoring techniques we haven't learned yet.

(define (mult10 alod)

 (cond [(empty? alod) empty]

 [else (cons (* (expt 10 (length (rest alod)))

 (first alod))

 (mult10 (rest alod)))]))

COMP 211, Spring 2010 14

Why local?

• Reason 3: Naming complicated expressions
;; mult10 : list-of-digits -> list-of-numbers

;; creates a list of numbers by multiplying each digit in alod

;; by (expt 10 p) where p is the number of digits that follow

;; This is bad code used only as an example. Good code

;; requires refactoring techniques we haven't learned yet.

(define (mult10 alod)

 (cond [(empty? alod) empty]

 [else (local [(define a-digit (first alod))
 (define the-rest (rest alod))
 (define p (length the-rest))]

 (cons (* (expt 10 p) a-digit) (mult10 the-rest))]))

Recap of Variable Scopes
from COMP 140

COMP 211, Spring 2010
Source: http://www.clear.rice.edu/comp140/labs/lab05/

COMP 211, Spring 2010 16

Variables and Scope in
Scheme
• Example:
 (local ((define answer1 42)]

 (define (f2 x3) (+ 1 x4)))

 (f5 answer6))
• Variable occurrences: 1-6

• Binding (or defining) occurrences: 1,2,3
• Use occurrences: 4,5,6
• Scope = code region where a definition may be used

• Scopes of definitions
• 1:?
• 2:?
• 3:?

COMP 211, Spring 2010 17

Variables and Scope

• What will g evaluate to?
(define x 0)
(define f x)
(define g

 (local ((define x 1)) f))

COMP 211, Spring 2010 18

 Renaming
• Example:

 (local [(define answer1 42)
 ((define (f2 x3) (+ 1 x4))]
 (f5 answer6))

• Which variable occurrences can be renamed within the
local expression?

• Use the same name for “binding occurrence” and all its
“use occurrences”.

• Local variables can safely be renamed (no change to the
answers produced by a program) without changing
anything in the surrounding program.

• What name choices can be used? Any name that does
not clash with variable names already visible in same
scope. A “fresh” variable name.

COMP 211, Spring 2010 19

Renaming
Example:
 (local [(define answer 42)
 (define (f x) (+ 1 x))]
 (f answer))
=>
 (local [(define answer_0 42)
 (define (f_0 x) (+ 1 x))]
 (f_0 answer_0))

We must rename all occurrences of a variable, both its
binding occurrence and its use occurrences. In the
preceding example, both answer and f have only one use
occurrence. (Every variable has exactly one binding
occurrence since each binding occurrence defines a new
variable.) We are using the same underscore number
convention for renaming as the DrScheme stepper.

COMP 211, Spring 2010 20

Renaming

Recall our example:
 (local [(define answer 42)
 (define (f x) (+ 1 x))]
 (f answer))
=>
 (local [(define answer_0 42)
 (define (f_0 x) (+ 1 x))]
 (f_0 answer_0))

We could also rename the function parameters within a local
expression but it is not necessary for our purposes. We simply want
to rename all of the variables (including function names) introduced
in a local.

COMP 211, Spring 2010 21

Renaming in Evaluating local

Idea: We can promote (move) the block of
defines introduced in a local to the top level (like
the other defines in our program) provided that
rename the variables introduced in the local so
that they cannot clash with variables already
defined at the top level.
Rule: when the leftmost unevaluated expression is
a local, rename the variables defined in the
local, lift the block of defines in the renamed
local to the top level, and replace the local
expression by its renamed body.

COMP 211, Spring 2010 22

Evaluating local Expressions

Recap: how do we (hand) evaluate Scheme programs
with local?
• By (i) renaming all of the defined variables in the

local (with fresh names to avoid any collisions with
variables already defined at the top level), (ii) lifting
the renamed local definitions to the top level, and (iii)
replacing the local expression by its renamed body.

To express this law we need a new format for
expressing rules. Why? Because lifting local
definitions augments the set of definitions that
constitute the environment in which evaluation takes
place.

(define x 2) ;; top-level definition

;; local-expression as part of another expression

(+ (local [(define x 3) (define (f x) (+ x 1))]

 (f x))

 1)

=>

(define x 2)

(define x_0 3)

(define (f_0 x) (+ x 1))) ;; parameters not renamed

(+ (f_0 x_0) 1)

=>

COMP 211, Spring 2010 23

Hand Evaluation Example

(define x 2)

(define x_0 3)

(define (f_0 x) (+ x 1)))

(+ (f_0 3) 1)

=>

(define x 2)

(define x_0 3)

(define (f_0 x) (+ x 1)))

(+ (+ 3 1) 1)

=>

(define x 2)

(define x_0 3)

(define (f_0 x) (+ x 1)))

(+ 4 1)

COMP 211, Spring 2010 23

Hand Evaluation Example

=>

(define x 2)

(define x_0 3)

(define (f_0 x) (+ x 1)))

(+ 4 1)

With local in the language, each step in the evaluation
must carry the environment (the block of defines
constituting the program) as well as the expression
being evaluated.
Confused? Try using the stepper (the menu button
shaped like a foot) on examples in DrScheme.

COMP 211, Spring 2010 24

Hand Evaluation Example

When naming can cause problems

Romeo, Romeo! wherefore art thou Romeo?
. . .

What's in a name? That which we call a rose
by any other name would smell as sweet.

Romeo and Juliet (II, ii)

COMP 211, Spring 2010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

