
1

Functions as Values

Corky Cartwright
Department of Computer Science

Rice University

COMP 210, Fall 2007 2

Functional Abstraction
• A powerful tool

• Makes programs more concise
• Avoids redundancy
• Promotes “single point of control”

• Generally involves polymorphic contracts
(contracts containing type variables)

• What we cover today for lists applies to any
recursive (self-referential) type

COMP 210, Fall 2007 3

Look for the pattern

• One function:
; add1-each : (listOf number) -> (listOf number)
; adds one to each number in list
(define (add1-each l)

(cond [(empty? l) empty]
 [else
 (cons (add1 (first l))
 (add1-each (rest l)))]))

COMP 210, Fall 2007 4

Look for the pattern

• Another function function:
; not-each : (listOf boolean) -> (listOf boolean)
; complements each boolean in the list
(define (not-each l)

(cond [(empty? l) empty]
 [else (cons (not (first l))
 (not-each (rest l)))]))

COMP 210, Fall 2007 5

Codify the pattern

• Abstracting with respect to add1, not, and the element
type in the lists:

; map : (X -> X), (listOf X) -> (listOf X)
; applies f to each element in l
(define (map f l)
 (cond [(empty? l) empty]
 [else (cons (f (first l))
 (map f (rest l)))]))

COMP 210, Fall 2007 6

Generalize the pattern
• Do all occurrences of X in contract of map need to be of the

same type?
; map : (X -> Y) (listOf X) -> (listOf Y)
; (map f l) returns the list consisting of f
; applied to each element in l

(define (map f l)
 (cond [(empty? l) empty]
 [else (cons (f (first l))
 (map f (rest l)))]))

COMP 210, Fall 2007 7

Tip on Generalizing Types
• When we generalize, we only replace

• specific types (like number or symbol)
• by type variables (like X or Y)

• We never replace a type by the any type, which
actually means

• number | boolean | listOf number | listOf ... |
number -> number | ...

• What goes wrong if we use any? We cannot
instantiate (bind) any as a custom type.

COMP 210, Fall 2007 8

Use the pattern
• map can be used with any unary function.
• (map not l)
• (map sqr l)
• (map length l)
• (map first l)
• (map symbol? l)
• Note: Other recursive data types also have maps!

COMP 210, Fall 2007 9

More about map
• Powerful tool for parallel computing!

• Has elegant properties (from mathematics):
• (map f (map g l)) = (map (compose f g) l)

• Soon we will see how to define compose

• For fun: Checkout Googleʼs “map/reduce”

COMP 210, Fall 2007 10

Better notation for function values
• Assume we want to square all of the elements in a list.

How can we do using map in a compact expression? We
need simple notation for denoting new functions without
using local. Alonzo Church invented such an notation in
the 1930's called lambda-notation. In Church's scheme
 λx.M
denotes the function f defined by the equation
 f(x) = M.

• Lisp (the progenitor of Scheme) adopted this notation for
new functions. In particular,
 (lambda (x1 .. xn) E)
 denotes the function f defined by:
 (define (f x1 .. xn) E)

COMP 210, Fall 2007 11

Examples of lambda

• ;; square the elements in a list
• (map (lambda (x) (* x x)) '(1 2 3 4))
• ;; compose: (Y -> Z) (X -> Y) -> (X -> Z)
• (define (compose f g)

 (lambda (x) (f (g x))))
• (map (compose add1 sub1) '(1 2 3 4))

Expressing lambda using local

 Straightforward, but ugly
(lambda (x1 ... Xn) M) =>
(local [(define (new-v x1 ... xn) M)] new-v)

COMP 210, Fall 2007 12

Templates as functions
• Recall the template for lists:
; (define (fn l)
; (cond
; [(empty? l) ...]
; [else ... (first l)
; ... (fn (rest l))
; ...]))

• Can we construct a function foldr that takes the
"…" for empty? and the "…" for else as
parameters init and op? Yes. The op parameter
must be a function because it must process (first
l) and (fn (rest l)).

COMP 210, Fall 2007 13

Templates as functions
• It would look just like this:
• ;; the contract is not obvious;
 (define (fold op init l)
 (cond [(empty? l) init]
 [else
 (op (first l)
 (fold op init (rest l)))]))

• Can we express all functions weʼve written using fold?
• Note: fold is called foldr in the Scheme library, terminology which is based

on a false duality. The foldl operation (which associates to the left) should
not exist in the Scheme library because lists are built right-to-left, not left-to-
right. The foldl/foldr pairing pretends that lists are symmetric and can be
naturally scanned right-to-left as well right-to-left. They can't and solutions
based on foldl are obscenely inefficient.

COMP 210, Fall 2007 14

map in terms of fold
Can we write map in terms of fold ? Yes.

map : (X->Y) (listOf X) -> (listOf Y)
(define (map f l)
(fold (lambda (x l)(cons (f x) l))
 empty
 l))

COMP 210, Fall 2007 15

What is the type of fold?
• fold: (X Y → Y) Y (listOf X) → Y
• (fold op init (list e1 .. en)) = (op e1 (.. (op en init) ..))
• = e1 op (.. (en op init) ..)) [infix]

• Reasoning: in (fold op init l), l is a listOf X, where X is
determined by the value of l. op is applied to (first l) and
(fold op init (rest l)), implying op has inputs e and y of type X and
Y.

COMP 210, Fall 2007 16

For Next Class
• Homework due next Monday. Don't dally.

• Reading:
• Ch 21-22: Abstracting designs and first class

functions

