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Abstract 
 
Drawing on Merritt’s divide-and-conquer sorting taxonomy 
[1], we model comparison-based sorting as an abstract class 
with a template method to perform the sort by relegating 
the splitting and joining of arrays to its concrete subclasses.  
Comparison on objects is carried out via an abstract 
ordering strategy.  This reduces code complexity and 
simplifies the analyses of the various concrete sorting 
algorithms.  Performance measurements and visualizations 
can be added without modifying any code by utilizing the 
decorator design pattern.  This object-oriented design not 
only provides the student a concrete way of unifying 
seemingly disparate sorting algorithms but also help 
him/her differentiate them at the proper level of abstraction. 
 
1 Introduction 

 
A widely accepted way of teaching sorting is to start with 
elementary algorithms such as insertion sort and selection 
sort and then progress to more sophisticated ones, such as 
quick sort and merge sort.  Sorting presented in this manner 
often appears to students as a bewildering array of differing 
techniques and analyses.  Often, they get lost in the nitty-
gritty code details, never gaining an overall understanding 
of the topic. 
 
An alternative approach would be to study sorting from the 
top down as proposed by Merritt [1].  At the top of her 
sorting taxonomy is an abstract divide-and-conquer 
algorithm: split the array to be sorted into two subarrays, 
(recursively) sort the subarrays, and join the sorted 
subarrays to form a sorted array.  Merritt considers all 
comparison-based algorithms as simply specializations of 
this abstraction and partitions them into two groups based 
on the complexity of the split and join procedures: easy 
split/hard join and hard split/easy join.  At the top of the 

groups easy split/hard join and hard split/easy join are 
merge sort and quick sort, respectively, and below them 
will fit all other well-known, more "low-level" algorithms.  
For example, splitting off only one element at each pass in 
merge sort results in insertion sort.  Thus insertion sort can 
be viewed as a special case of merge sort. 
 
Merritt’s thesis is potentially a very powerful method for 
studying and understanding sorting.  However, to our 
knowledge, no systematic treatment exists that truly 
reflects its theoretical underpinnings.  Merritt’s abstract 
characterization of sorting exhibits much object-oriented 
(OO) flavor and can be described in terms of OO concepts. 
 
We present in this paper our OO formulation and 
implementation of Merritt’s taxonomy, one that we have 
successfully taught to our first year computer science 
students.  We will explain how the abstract concept of 
sorting is appropriately captured in terms of standard 
design patterns [2].  We will also seek to illustrate the 
many benefits of this particular OO view of sorting.  
Effective use of polymorphism properly relegates specific 
tasks to subclasses and minimizes flow control, resulting in 
less code and reduced code complexity.  Unifying sorting 
under the single abstract principle of divide-and-conquer 
leads to an across the board simplification of running time 
analysis.  Treating all sort algorithms uniformly at the same 
abstract level provides ways to extend and add more 
capabilities to existing code without modification, 
facilitating code reuse.  As students digest fundamental 
algorithmic techniques, they also get to learn and 
appreciate sound software engineering principles built on 
key OO design considerations. 
 
Section 2 describes how the template method pattern is 
applied to capture the abstract sort procedure.  Section 3 
explains how the strategy pattern is used to decouple the 
task of sorting from the comparison operation.  Section 4 
details a few of the common sort algorithms and shows 
how they fit into the abstract hierarchy.  Section 5 discusses 
how the new formulation simplifies and unifies the 
complexity analysis for all the different algorithms.  
Section 6 demonstrates the flexibility and extensibility of 
the design by applying the decorator design pattern to add 
performance measurements and visualization such as 
animation without touching any existing code. 
 

 



2 Template Method Design Pattern 
 
At the heart of Merritt’s taxonomy is the thesis that all 
comparison-based sorts can be expressed as a divide-and-
conquer algorithm exemplified by merge sort and quick 
sort.  What distinguishes one sort from another is the way 
the original array is split off into subarrays and the way the 
sorted subarrays are reassembled to form a sorted array.  
For example, selection sort splits the array at the low index 
after selecting and moving the minimum element there, 
(recursively) sorts the two subarrays, and then rejoins the 
sorted subarrays by doing nothing! 
 
Thus the invariant in the above abstraction of sorting is the 
divide-and-conquer algorithm whose split and join steps are 
allowed to vary.  Modeling an invariant behavior that is 
composed of variant behaviors is a simple application of 
the template method design pattern [2] as shown in the 
following UML diagram using Java syntax. 

 
In Figure 1, the abstract class, ASorter, embodies the 
general sorting principles under study.  Its sort() method, 
the "template method", sorts an array indexed from lo to hi 
by calling the abstract split() and join() methods, deferring 
these tasks to a concrete subclass.  By making sort() final, 
we guarantee its invariance throughout the complete class 
hierarchy. 
 
The split() method rearranges the elements in the array in 
some specific fashion and returns the index where the array 
is divided into two subarrays.  After the two subarrays are 
(recursively) sorted, the join() method appropriately 
combines them into a sorted array.  Each concrete subclass 
of ASorter represents a concrete sorting algorithm.  It 
inherits and reuses the sort() method and only overrides 
split() and join().  This is an example of sensible code 
reuse: reuse only that which is invariant and override that 
which varies. 
 

As Figure 1 indicates, the OO taxonomy tree presented 
here is only one level deep.  And unlike Merritt’s proposed 
hierarchy, we see no need for capturing the complexity of 
the split()/join() pair in our design.  The simplicity of the 
template pattern and the flatness of the taxonomy tree 
enable students see the set of sorting algorithms as unified 
and interrelated whole and not as disparate low-level 
manipulations.  Figure 2 below shows the recursive call 
tree for the sort() method of a hypothetical sort algorithm. 
 

 
3 The Strategy Pattern for Object Comparison 
 
Sorting requires a total order relation on the data.  We hold 
the view that it is the user of the data that arbitrarily 
imposes an order relation for sorting and not that the data 
intrinsically "know" their ordering.  And thus, we seek to 
decouple the ordering of data from both the data and the 
sorting of data. 
 
We can define a total order in terms of two abstract 
comparison operations that take two Object instances as 
input and returns a boolean as output: one for a strict 
ordering1 and one for equality, and encapsulate them in an 
abstract class, AOrder.  These two operations must be 
implemented in a way that their disjunction defines a total 
order on the domain they operate on.  The strict order 
comparison facilitates the implementation of stable sort 
algorithms.  Below is the Java code listing for AOrder. 
 
                                                           
1 A "strict" order is a relation that is non-reflexive, anti-
symmetric, and transitive. 

Figure 2: Hypothetical Sort Recursion Tree. 
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Figure 1: The Template Method Pattern for Sorting 



public abstract class AOrder  { 
 public abstract boolean lt(Object x, Object y); 
 // defines a "less than" strict ordering. 
 
 public abstract boolean eq(Object x, Object y); 
 // defines equality. 
 
 public boolean ne(Object x, Object y)  {return !eq(x, y);} 
 public boolean le(Object x, Object y)  {return lt(x, y) || eq(x, y);} 
 public boolean gt(Object x, Object y)  {return !le(x, y)}; 
 public boolean ge(Object x, Object y) {return !lt(x, y);} 
} 
Listing 1: Abstract Total Order Relation. 
 
As a convenience, we include the other "standard" 
comparison operations in the specification of AOrder.  
These operations are defined in terms of the two primary 
abstract comparison operations and are not abstract.  Any 
concrete subclass may override them if so desired. 
 
ASorter maintains a reference to a concrete instance of 
AOrder.  When a concrete sorter is instantiated, it must be 
given a concrete order to be used in its (concrete) split() 
and join() methods.  The client can change the ordering in 
the sort by simply calling the setOrder() method on the 
sorter.  This loose coupling between ASorter and AOrder 
is called the strategy pattern, where AOrder is said to be 
the order strategy for ASorter.  It provides the flexibility 
for different sort algorithms to share the same order and for 
different order relations to be used by the same sorter. 
 
4 Concrete Sort Examples 
 
Our OO sort formulation clearly and cleanly delineates the 
task of sorting into two subtasks, making it easier to 
understand and verify its correctness.  Writing a sort 
algorithm reduces to subclassing ASorter and overriding 
the split() and join() methods.  The recursive method 
ASorter.sort() correctly sorts the base case where the array 
size is less or equal to one.  It also sets up the loop variant 
and makes the proper recursive calls.  Its correctness thus 
solely depends on the correctness of the concrete split() and 
join(). 
 
Listing 2 below shows how insertion sort is implemented 
in our sort framework. 
 
public class InsertionSorter extends ASorter  { 
 // Constructor omitted. 
 protected int split(Object[] A, int lo, int hi)  { 
  return hi; 
 } 
 
 protected void join(Object[] A, int lo, int s, int hi)  { 
 // Pre: A[lo:hi-1] is sorted. 
 // Algo: Inserts A[hi] in order into A[lo:hi-1]. 
 // Post: A[lo:hi] is sorted. 

int j, key = A[hi]; 
for (j = hi; lo < j && aOrder.lt(key,A[j-1]); j--)  A[j] = A[j-1]; 
A[j] = key; 

 } 
} 
Listing 2: Insertion Sort. 

In Listing 2, we see that the split() method returns the 
index of the last element of the  array, and, in effect, 
partitions the array A[lo:hi] into two subarrays A[lo:hi-1] 
and A[hi].  The join() method simply uses the order 
strategy, aOrder, to search A[lo:hi-1] for proper place to 
insert the last element.  Conspicuously missing is the 
familiar nested loop construct in the common procedural 
implementation of insertion sort.  The sort() method 
inherited without modification from ASorter plays the role 
of the traditional outer loop.  The problem of sorting of an 
array of data is transformed into the problem of inserting 
one element in order into the array.  There is less code to 
write and fewer control constructs.  Verifying the 
correctness of insertion sort reduces to verifying 
correctness of inserting A[hi] in order into A[lo:hi-1]. 
 
The quick sort implementation shown in Listing 3 below is 
the opposite of the insertion sorter as the split method is 
more complex while the join method is trivial. 
 
public class QuickSorter extends ASorter  { 
 // Constructor omitted. 
 protected int split(Object[] A, int lo, int hi)  { 
  // Select a pivot element p and rearrange A in such a way  

// that all elements to the left of p are less than p and all  
// elements to the right of p are greater or equal to p. 
// Return the index of p. 

 } 
 
 protected void join(Object[] A, int lo, int s, int hi)  {// do nothing } 
} 
Listing 3: Quick Sort. 
 
In this case, the students can concentrate on understanding 
the algorithm for locating the pivot point without being 
distracted by the surrounding control structures. 
 
Table 1 below summarizes the split/join operations of a 
few common sort algorithms. 
 

Sort Split operation Join operation 

Insertion Return hi 
Insert A[hi] into 
proper location. 

Merge Return midpoint index. Merge subarrays. 
Quick Find and return pivot point index Do nothing. 
Selection Swap extremum with A[hi] and return hi Do nothing. 

Bubble 
Bubble up extremum to A[hi] and return 
hi 

Do nothing. 

Heap 
Swap extremum (A[lo]) and A[hi], 
reheapify A[lo, hi-1], and return hi. 

Do nothing. 

 
Table 1: Concrete split/join Operations 
 
From Table 1, we can see that selection sort, bubble sort, 
and heap sort2 are essentially identical processes, though 
they have different algorithmic complexities: they all pull 
out the extremum from the array and split it off.  A trivial 
no-op join then follows this.  Quick sort is similar to the 

                                                           
2 Heap sort heapifies the array only once at construction 
time. 



selection/bubble/heap genera except that it pulls off a set of 
one or more extrema values. 
 
On the flip side of the coin, we see that insertion sort and 
merge sort are similar in that their split operations are 
trivial while their join operations are more complex.  
Insertion splits off one element at a time while merge sort 
splits the array in half each time.  One can think of the 
join() method in insertion sort as merging a sorted array 
with a one-element array (which is obviously sorted). 
 
5 Complexity Analysis 
 
Our formulation and implementation of sorting helps 
students develop the mathematical thinking and techniques 
in analyzing the complexity of an algorithm.  On one hand, 
the sort template method engenders a recursion tree (see 
Figure 2), which provides some heuristics on the sort 
complexity.  On the other hand, it leads to a canonical 
recurrence relation that serves as a common starting point 
for students to make the first step in their analysis of each 
of the concrete sort algorithms. 
 
It is easy to see from Figure 2 that the total running time of 
a sort is equal to the sum of the running time of each level 
of the recursion sort tree.  If the running time at each level 
is uniformly bounded by some function f(n), then the total 
running time is bounded by f(n) times the height of the sort 
tree.  Sketching the sort tree for a few of the concrete 
algorithms helps students develop some intuition on their 
complexity analyses. 
 
A formal treatment of complexity involves deriving a 
recurrence relation for T(lo, hi), the running time to sort an 
array A[lo..hi] indexed from lo to hi with lo <= hi.  The 
code for sort() in Figure 1 clearly indicates that 

R1:  




<++++
=

=
h lJ(l,s,h)T(s,h))T(l,s-S(l,h)c

 h l c 
T(l, h)

if 1

if  
  

where c is the constant running time to compare lo with hi, 
S(lo, hi) is the running time to split A into two subarrays, 
A[lo..s-1] and A[s, hi], and J[lo, s, hi] is the running time 
for joining the two sorted subarrays A[lo..s-1] and A[s..hi] 
to form the sorted array A[lo..hi]. 
 
It is necessary to examine the code for the specific split() 
and join() methods of a particular sort algorithm to 
compute S[lo, hi] and J[lo, s, hi] in order to solve R1.  Let n 
denote the size of the array.  The steps in the computation 
of T(n) are identical for all of the sort algorithms: start with 
the canonical relation R1, plug in the values for s, S[lo, hi], 
and J[lo, s, hi], and simplify.  Note that the functional form 
of s may depend on whether one sorts from lo to hi or hi to 
lo.  The simplification will lead to one of the following two 
recurrence relations: 

R2:  
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R2 and R3 can then be solved using the same standard 
discrete mathematics technique yielding the results shown 
in Table 2 below. 
 

Sort s S[lo, hi] J[lo, s, 
hi] 

T(n) 

Insertion hi O(1) O(hi-lo) O(n2) 
Merge (lo+hi+1)/2 O(1) O(hi-lo) O(n log n) 
Quick varies O(hi-lo) O(1) O(n2) worst case 
Selection lo + 1 O(hi-lo) O(1) O(n2) 
Bubble hi O(hi-lo) O(1) O(n2) 
Heap hi O(log(hi-lo)) O(1) O(n log n) 

 
Table 2: Running Time for Sorting 
 
This uniform treatment of sorting simplifies the analysis 
process and thus facilitates students’ learning and reinforces 
their understanding of the subject.  Casting sorting in terms 
of a divide-and-conquer template with an ordering strategy 
does not change the fundamental algorithms.  Performance 
measurements and analysis of the algorithms show that 
while some extra dispatching overhead is incurred with this 
formulation, the additive nature of the template pattern 
does not affect the net running time complexity. 
 
6 Performance Measurements and Visualization 
 
Programming sorting at the level of abstraction 
characterized by the two abstract classes ASorter and 
AOrder enables an open-ended extension to our OO sort 
framework.  For example, we can add performance 
measurements and animation to any sort algorithm without 
modification of any of the existing code.  Performance 
evaluation and graphics are not fundamentally part of the 
sorting process, so students should learn that their sorting 
code should not be torn apart and re-written to add these 
capabilities.  While a full discussion of the code is beyond 
the scope of this paper, we will briefly outline the 
fundamental principles involved. 
 
The key design solution to such extensions is the decorator 
pattern [2].  This pattern enables one to use a “decorator” 
object to intercept methods calls to another object (the 
“decoree”) in the same abstract class hierarchy and perform 
auxiliary functions in addition to dispatching the original 
call to the decoree.  Since the decorator is abstractly 
equivalent to the decoree, the caller is completely unaware 
of its existence. 
 
A common performance metric for sorting is the 
comparison count.  To count comparisons, all we have to 
do is decorate the specific AOrder object by intercepting 
all comparison operator calls as shown in Figure 3 below. 



 
In Figure 3, counter is an object that "knows" how to 
count.  Thus, CountOrder can be used to build a package 
that counts the number of comparisons of any concrete 
sorter algorithm, with any concrete AOrder strategy on any 
set of data.  All the client has to do is to specify the sort 
algorithm, the order strategy, and the data array.  This is the 
case where composition is clearly more flexible than 
inheritance. 
 
To help visualize a sort algorithm, we arbitrarily choose to 
sort integers and apply the adapter pattern to add graphics 
capabilities that allow us to paint them in some specific 
ways on the screen.  As we sort the data array, we highlight 
the two data objects that are being compared in the sort and 
paint the data array at each split and each join.  Such an 
animation program can be based on the Model-View-
Controller (MVC) pattern [2].  The following is a brief 
description of our implementation in Java. 
 
The model consists of the array of graphical objects, 
GraphicSorter (see Figure 1), a decorator for ASorter, 
and GraphicOrder (see Figure 3), a decorator for AOrder.  
Listing 5 below shows how GraphicSorter decorates 
ASorter by intercepting the split() and join() methods, 
carrying out graphical operations, and pausing momentarily 
for the view to repaint before returning. 
 
public class GraphicSorter extends ASorter  { 

private ASorter sorter; // decoree 
// Constructor and utility methods omitted. 

 
 protected int split(Object[] A, int lo, int hi)  { 
  int s =  sorter.split(A,lo, hi);  // forward to decoree 

// performs graphical operations and pauses momentarily. 
  return s; 

} 
// join() method is similarly decorated. 

} 
Listing 5: Decorating ASorter for Animation. 
 
The view contains various graphics components, one of 
which is a JPanel where the data array is painted.  The 
controller maintains a Timer object that periodically calls 
on the view to repaint the data array on a separate thread 
from the sorting process.  As the sorting algorithm moves 

the data elements in the array, the view’s display algorithm 
independently updates their position on the screen. Thus 
the animation of the sorting process occurs completely 
separate from the sorting algorithm itself. 
 
7 Conclusion 

 
The OO sort model presented here reflects our general 
approach of teaching principles in lieu of disparate facts 
and techniques.  Our model draws on Merritt's "inverted 
taxonomy", which in turn is founded on the principle of 
divide-and-conquer.  Object-orientation together with the 
language of patterns provides a clean and concise way of 
formulating and implementing sorting based on this 
principle.  Sorting is modeled as an abstract class with a 
template method to perform the sorting.  This method 
relegates the splitting and joining of arrays to the concrete 
subclasses, which use an abstract ordering strategy to 
perform comparisons on objects. 
 
The similarities and dissimilarities of comparison-based 
sort algorithms can be explained in terms of the concrete 
split and join operations.  The code in the concrete and 
specific sort subclasses now deals only with the small 
portion of the overall algorithm particular to its type.  Such 
a transformation not only reduces code complexity but also 
simplifies and unifies the analysis of the various concrete 
sorting algorithms.  The OO design of our sort model thus 
provides the student a concrete way of unifying and inter-
relating seemingly disparate sorting algorithms. 
 
By adhering to the general principle of programming to the 
abstraction, our sort model also provides the flexibility to 
add new capabilities without modification of existing code.  
For example, by using the decorator pattern, we can add 
performance measurements and visualizations without even 
knowing what sort algorithm is being used. 
 
We teach sorting early not only as an essential 
programming tool but also as a means to develop students' 
algorithmic and mathematical thinking skill.  In addition to 
helping achieve these goals, our OO sort model also 
exposes the student to key OO design and OO 
programming concepts in a small enough setting that is 
easily comprehended yet that demonstrates its large-scale 
advantages.  This work is part of our overall effort to 
introduce object-orientation early into the computer science 
curriculum. 
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Figure 3: Decorated ordering strategies. 


