
Design Patterns for Sorting

Dung (“Zung”) Nguyen
Dept. of Computer Science

Rice University
Houston, TX 77251

dxnguyen@cs.rice.edu

Stephen B. Wong
Computer Science Program

Oberlin College
Oberlin, OH 44074

stephen.wong@oberlin.edu

Abstract

Drawing on Merritt’s divide-and-conquer sorting taxonomy
[1], we model comparison-based sorting as an abstract class
with a template method to perform the sort by relegating
the splitting and joining of arrays to its concrete subclasses.
Comparison on objects is carried out via an abstract
ordering strategy. This reduces code complexity and
simplifies the analyses of the various concrete sorting
algorithms. Performance measurements and visualizations
can be added without modifying any code by utilizing the
decorator design pattern. This object-oriented design not
only provides the student a concrete way of unifying
seemingly disparate sorting algorithms but also help
him/her differentiate them at the proper level of abstraction.

1 Introduction

A widely accepted way of teaching sorting is to start with
elementary algorithms such as insertion sort and selection
sort and then progress to more sophisticated ones, such as
quick sort and merge sort. Sorting presented in this manner
often appears to students as a bewildering array of differing
techniques and analyses. Often, they get lost in the nitty-
gritty code details, never gaining an overall understanding
of the topic.

An alternative approach would be to study sorting from the
top down as proposed by Merritt [1]. At the top of her
sorting taxonomy is an abstract divide-and-conquer
algorithm: split the array to be sorted into two subarrays,
(recursively) sort the subarrays, and join the sorted
subarrays to form a sorted array. Merritt considers all
comparison-based algorithms as simply specializations of
this abstraction and partitions them into two groups based
on the complexity of the split and join procedures: easy
split/hard join and hard split/easy join. At the top of the

groups easy split/hard join and hard split/easy join are
merge sort and quick sort, respectively, and below them
will fit all other well-known, more "low-level" algorithms.
For example, splitting off only one element at each pass in
merge sort results in insertion sort. Thus insertion sort can
be viewed as a special case of merge sort.

Merritt’s thesis is potentially a very powerful method for
studying and understanding sorting. However, to our
knowledge, no systematic treatment exists that truly
reflects its theoretical underpinnings. Merritt’s abstract
characterization of sorting exhibits much object-oriented
(OO) flavor and can be described in terms of OO concepts.

We present in this paper our OO formulation and
implementation of Merritt’s taxonomy, one that we have
successfully taught to our first year computer science
students. We will explain how the abstract concept of
sorting is appropriately captured in terms of standard
design patterns [2]. We will also seek to illustrate the
many benefits of this particular OO view of sorting.
Effective use of polymorphism properly relegates specific
tasks to subclasses and minimizes flow control, resulting in
less code and reduced code complexity. Unifying sorting
under the single abstract principle of divide-and-conquer
leads to an across the board simplification of running time
analysis. Treating all sort algorithms uniformly at the same
abstract level provides ways to extend and add more
capabilities to existing code without modification,
facilitating code reuse. As students digest fundamental
algorithmic techniques, they also get to learn and
appreciate sound software engineering principles built on
key OO design considerations.

Section 2 describes how the template method pattern is
applied to capture the abstract sort procedure. Section 3
explains how the strategy pattern is used to decouple the
task of sorting from the comparison operation. Section 4
details a few of the common sort algorithms and shows
how they fit into the abstract hierarchy. Section 5 discusses
how the new formulation simplifies and unifies the
complexity analysis for all the different algorithms.
Section 6 demonstrates the flexibility and extensibility of
the design by applying the decorator design pattern to add
performance measurements and visualization such as
animation without touching any existing code.

2 Template Method Design Pattern

At the heart of Merritt’s taxonomy is the thesis that all
comparison-based sorts can be expressed as a divide-and-
conquer algorithm exemplified by merge sort and quick
sort. What distinguishes one sort from another is the way
the original array is split off into subarrays and the way the
sorted subarrays are reassembled to form a sorted array.
For example, selection sort splits the array at the low index
after selecting and moving the minimum element there,
(recursively) sorts the two subarrays, and then rejoins the
sorted subarrays by doing nothing!

Thus the invariant in the above abstraction of sorting is the
divide-and-conquer algorithm whose split and join steps are
allowed to vary. Modeling an invariant behavior that is
composed of variant behaviors is a simple application of
the template method design pattern [2] as shown in the
following UML diagram using Java syntax.

In Figure 1, the abstract class, ASorter, embodies the
general sorting principles under study. Its sort() method,
the "template method", sorts an array indexed from lo to hi
by calling the abstract split() and join() methods, deferring
these tasks to a concrete subclass. By making sort() final,
we guarantee its invariance throughout the complete class
hierarchy.

The split() method rearranges the elements in the array in
some specific fashion and returns the index where the array
is divided into two subarrays. After the two subarrays are
(recursively) sorted, the join() method appropriately
combines them into a sorted array. Each concrete subclass
of ASorter represents a concrete sorting algorithm. It
inherits and reuses the sort() method and only overrides
split() and join(). This is an example of sensible code
reuse: reuse only that which is invariant and override that
which varies.

As Figure 1 indicates, the OO taxonomy tree presented
here is only one level deep. And unlike Merritt’s proposed
hierarchy, we see no need for capturing the complexity of
the split()/join() pair in our design. The simplicity of the
template pattern and the flatness of the taxonomy tree
enable students see the set of sorting algorithms as unified
and interrelated whole and not as disparate low-level
manipulations. Figure 2 below shows the recursive call
tree for the sort() method of a hypothetical sort algorithm.

3 The Strategy Pattern for Object Comparison

Sorting requires a total order relation on the data. We hold
the view that it is the user of the data that arbitrarily
imposes an order relation for sorting and not that the data
intrinsically "know" their ordering. And thus, we seek to
decouple the ordering of data from both the data and the
sorting of data.

We can define a total order in terms of two abstract
comparison operations that take two Object instances as
input and returns a boolean as output: one for a strict
ordering1 and one for equality, and encapsulate them in an
abstract class, AOrder. These two operations must be
implemented in a way that their disjunction defines a total
order on the domain they operate on. The strict order
comparison facilitates the implementation of stable sort
algorithms. Below is the Java code listing for AOrder.

1 A "strict" order is a relation that is non-reflexive, anti-
symmetric, and transitive.

Figure 2: Hypothetical Sort Recursion Tree.

unsorted

sorted

split

split

split

split

join

join

join join

split

join

= unsorted = sorted

= sort process

Figure 1: The Template Method Pattern for Sorting

public abstract class AOrder {
 public abstract boolean lt(Object x, Object y);
 // defines a "less than" strict ordering.

 public abstract boolean eq(Object x, Object y);
 // defines equality.

 public boolean ne(Object x, Object y) {return !eq(x, y);}
 public boolean le(Object x, Object y) {return lt(x, y) || eq(x, y);}
 public boolean gt(Object x, Object y) {return !le(x, y)};
 public boolean ge(Object x, Object y) {return !lt(x, y);}
}
Listing 1: Abstract Total Order Relation.

As a convenience, we include the other "standard"
comparison operations in the specification of AOrder.
These operations are defined in terms of the two primary
abstract comparison operations and are not abstract. Any
concrete subclass may override them if so desired.

ASorter maintains a reference to a concrete instance of
AOrder. When a concrete sorter is instantiated, it must be
given a concrete order to be used in its (concrete) split()
and join() methods. The client can change the ordering in
the sort by simply calling the setOrder() method on the
sorter. This loose coupling between ASorter and AOrder
is called the strategy pattern, where AOrder is said to be
the order strategy for ASorter. It provides the flexibility
for different sort algorithms to share the same order and for
different order relations to be used by the same sorter.

4 Concrete Sort Examples

Our OO sort formulation clearly and cleanly delineates the
task of sorting into two subtasks, making it easier to
understand and verify its correctness. Writing a sort
algorithm reduces to subclassing ASorter and overriding
the split() and join() methods. The recursive method
ASorter.sort() correctly sorts the base case where the array
size is less or equal to one. It also sets up the loop variant
and makes the proper recursive calls. Its correctness thus
solely depends on the correctness of the concrete split() and
join().

Listing 2 below shows how insertion sort is implemented
in our sort framework.

public class InsertionSorter extends ASorter {
 // Constructor omitted.
 protected int split(Object[] A, int lo, int hi) {
 return hi;
 }

 protected void join(Object[] A, int lo, int s, int hi) {
 // Pre: A[lo:hi-1] is sorted.
 // Algo: Inserts A[hi] in order into A[lo:hi-1].
 // Post: A[lo:hi] is sorted.

int j, key = A[hi];
for (j = hi; lo < j && aOrder.lt(key,A[j-1]); j--) A[j] = A[j-1];
A[j] = key;

 }
}
Listing 2: Insertion Sort.

In Listing 2, we see that the split() method returns the
index of the last element of the array, and, in effect,
partitions the array A[lo:hi] into two subarrays A[lo:hi-1]
and A[hi]. The join() method simply uses the order
strategy, aOrder, to search A[lo:hi-1] for proper place to
insert the last element. Conspicuously missing is the
familiar nested loop construct in the common procedural
implementation of insertion sort. The sort() method
inherited without modification from ASorter plays the role
of the traditional outer loop. The problem of sorting of an
array of data is transformed into the problem of inserting
one element in order into the array. There is less code to
write and fewer control constructs. Verifying the
correctness of insertion sort reduces to verifying
correctness of inserting A[hi] in order into A[lo:hi-1].

The quick sort implementation shown in Listing 3 below is
the opposite of the insertion sorter as the split method is
more complex while the join method is trivial.

public class QuickSorter extends ASorter {
 // Constructor omitted.
 protected int split(Object[] A, int lo, int hi) {
 // Select a pivot element p and rearrange A in such a way

// that all elements to the left of p are less than p and all
// elements to the right of p are greater or equal to p.
// Return the index of p.

 }

 protected void join(Object[] A, int lo, int s, int hi) {// do nothing }
}
Listing 3: Quick Sort.

In this case, the students can concentrate on understanding
the algorithm for locating the pivot point without being
distracted by the surrounding control structures.

Table 1 below summarizes the split/join operations of a
few common sort algorithms.

Sort Split operation Join operation

Insertion Return hi
Insert A[hi] into
proper location.

Merge Return midpoint index. Merge subarrays.
Quick Find and return pivot point index Do nothing.
Selection Swap extremum with A[hi] and return hi Do nothing.

Bubble
Bubble up extremum to A[hi] and return
hi

Do nothing.

Heap
Swap extremum (A[lo]) and A[hi],
reheapify A[lo, hi-1], and return hi.

Do nothing.

Table 1: Concrete split/join Operations

From Table 1, we can see that selection sort, bubble sort,
and heap sort2 are essentially identical processes, though
they have different algorithmic complexities: they all pull
out the extremum from the array and split it off. A trivial
no-op join then follows this. Quick sort is similar to the

2 Heap sort heapifies the array only once at construction
time.

selection/bubble/heap genera except that it pulls off a set of
one or more extrema values.

On the flip side of the coin, we see that insertion sort and
merge sort are similar in that their split operations are
trivial while their join operations are more complex.
Insertion splits off one element at a time while merge sort
splits the array in half each time. One can think of the
join() method in insertion sort as merging a sorted array
with a one-element array (which is obviously sorted).

5 Complexity Analysis

Our formulation and implementation of sorting helps
students develop the mathematical thinking and techniques
in analyzing the complexity of an algorithm. On one hand,
the sort template method engenders a recursion tree (see
Figure 2), which provides some heuristics on the sort
complexity. On the other hand, it leads to a canonical
recurrence relation that serves as a common starting point
for students to make the first step in their analysis of each
of the concrete sort algorithms.

It is easy to see from Figure 2 that the total running time of
a sort is equal to the sum of the running time of each level
of the recursion sort tree. If the running time at each level
is uniformly bounded by some function f(n), then the total
running time is bounded by f(n) times the height of the sort
tree. Sketching the sort tree for a few of the concrete
algorithms helps students develop some intuition on their
complexity analyses.

A formal treatment of complexity involves deriving a
recurrence relation for T(lo, hi), the running time to sort an
array A[lo..hi] indexed from lo to hi with lo <= hi. The
code for sort() in Figure 1 clearly indicates that

R1:




<++++
=

=
h lJ(l,s,h)T(s,h))T(l,s-S(l,h)c

 h l c
T(l, h)

if 1

if

where c is the constant running time to compare lo with hi,
S(lo, hi) is the running time to split A into two subarrays,
A[lo..s-1] and A[s, hi], and J[lo, s, hi] is the running time
for joining the two sorted subarrays A[lo..s-1] and A[s..hi]
to form the sorted array A[lo..hi].

It is necessary to examine the code for the specific split()
and join() methods of a particular sort algorithm to
compute S[lo, hi] and J[lo, s, hi] in order to solve R1. Let n
denote the size of the array. The steps in the computation
of T(n) are identical for all of the sort algorithms: start with
the canonical relation R1, plug in the values for s, S[lo, hi],
and J[lo, s, hi], and simplify. Note that the functional form
of s may depend on whether one sorts from lo to hi or hi to
lo. The simplification will lead to one of the following two
recurrence relations:

R2:




>Ο+
=Ο

=
1 if 1

1if1

n(f(n)))T(n-

, n) (
T(n)

R3:




>Ο+
=Ο

=
1if

1if1

 n(f(n)) aT(n/b)

, n) (
T(n)

R2 and R3 can then be solved using the same standard
discrete mathematics technique yielding the results shown
in Table 2 below.

Sort s S[lo, hi] J[lo, s,
hi]

T(n)

Insertion hi O(1) O(hi-lo) O(n2)
Merge (lo+hi+1)/2 O(1) O(hi-lo) O(n log n)
Quick varies O(hi-lo) O(1) O(n2) worst case
Selection lo + 1 O(hi-lo) O(1) O(n2)
Bubble hi O(hi-lo) O(1) O(n2)
Heap hi O(log(hi-lo)) O(1) O(n log n)

Table 2: Running Time for Sorting

This uniform treatment of sorting simplifies the analysis
process and thus facilitates students’ learning and reinforces
their understanding of the subject. Casting sorting in terms
of a divide-and-conquer template with an ordering strategy
does not change the fundamental algorithms. Performance
measurements and analysis of the algorithms show that
while some extra dispatching overhead is incurred with this
formulation, the additive nature of the template pattern
does not affect the net running time complexity.

6 Performance Measurements and Visualization

Programming sorting at the level of abstraction
characterized by the two abstract classes ASorter and
AOrder enables an open-ended extension to our OO sort
framework. For example, we can add performance
measurements and animation to any sort algorithm without
modification of any of the existing code. Performance
evaluation and graphics are not fundamentally part of the
sorting process, so students should learn that their sorting
code should not be torn apart and re-written to add these
capabilities. While a full discussion of the code is beyond
the scope of this paper, we will briefly outline the
fundamental principles involved.

The key design solution to such extensions is the decorator
pattern [2]. This pattern enables one to use a “decorator”
object to intercept methods calls to another object (the
“decoree”) in the same abstract class hierarchy and perform
auxiliary functions in addition to dispatching the original
call to the decoree. Since the decorator is abstractly
equivalent to the decoree, the caller is completely unaware
of its existence.

A common performance metric for sorting is the
comparison count. To count comparisons, all we have to
do is decorate the specific AOrder object by intercepting
all comparison operator calls as shown in Figure 3 below.

In Figure 3, counter is an object that "knows" how to
count. Thus, CountOrder can be used to build a package
that counts the number of comparisons of any concrete
sorter algorithm, with any concrete AOrder strategy on any
set of data. All the client has to do is to specify the sort
algorithm, the order strategy, and the data array. This is the
case where composition is clearly more flexible than
inheritance.

To help visualize a sort algorithm, we arbitrarily choose to
sort integers and apply the adapter pattern to add graphics
capabilities that allow us to paint them in some specific
ways on the screen. As we sort the data array, we highlight
the two data objects that are being compared in the sort and
paint the data array at each split and each join. Such an
animation program can be based on the Model-View-
Controller (MVC) pattern [2]. The following is a brief
description of our implementation in Java.

The model consists of the array of graphical objects,
GraphicSorter (see Figure 1), a decorator for ASorter,
and GraphicOrder (see Figure 3), a decorator for AOrder.
Listing 5 below shows how GraphicSorter decorates
ASorter by intercepting the split() and join() methods,
carrying out graphical operations, and pausing momentarily
for the view to repaint before returning.

public class GraphicSorter extends ASorter {

private ASorter sorter; // decoree
// Constructor and utility methods omitted.

 protected int split(Object[] A, int lo, int hi) {
 int s = sorter.split(A,lo, hi); // forward to decoree

// performs graphical operations and pauses momentarily.
 return s;

}
// join() method is similarly decorated.

}
Listing 5: Decorating ASorter for Animation.

The view contains various graphics components, one of
which is a JPanel where the data array is painted. The
controller maintains a Timer object that periodically calls
on the view to repaint the data array on a separate thread
from the sorting process. As the sorting algorithm moves

the data elements in the array, the view’s display algorithm
independently updates their position on the screen. Thus
the animation of the sorting process occurs completely
separate from the sorting algorithm itself.

7 Conclusion

The OO sort model presented here reflects our general
approach of teaching principles in lieu of disparate facts
and techniques. Our model draws on Merritt's "inverted
taxonomy", which in turn is founded on the principle of
divide-and-conquer. Object-orientation together with the
language of patterns provides a clean and concise way of
formulating and implementing sorting based on this
principle. Sorting is modeled as an abstract class with a
template method to perform the sorting. This method
relegates the splitting and joining of arrays to the concrete
subclasses, which use an abstract ordering strategy to
perform comparisons on objects.

The similarities and dissimilarities of comparison-based
sort algorithms can be explained in terms of the concrete
split and join operations. The code in the concrete and
specific sort subclasses now deals only with the small
portion of the overall algorithm particular to its type. Such
a transformation not only reduces code complexity but also
simplifies and unifies the analysis of the various concrete
sorting algorithms. The OO design of our sort model thus
provides the student a concrete way of unifying and inter-
relating seemingly disparate sorting algorithms.

By adhering to the general principle of programming to the
abstraction, our sort model also provides the flexibility to
add new capabilities without modification of existing code.
For example, by using the decorator pattern, we can add
performance measurements and visualizations without even
knowing what sort algorithm is being used.

We teach sorting early not only as an essential
programming tool but also as a means to develop students'
algorithmic and mathematical thinking skill. In addition to
helping achieve these goals, our OO sort model also
exposes the student to key OO design and OO
programming concepts in a small enough setting that is
easily comprehended yet that demonstrates its large-scale
advantages. This work is part of our overall effort to
introduce object-orientation early into the computer science
curriculum.

References

[1] Merritt, S. An Inverted Taxonomy of Sorting

Algorithms, Comm. ACM, 28, 1 (Jan. 1985), 96-99.

[2] Gamma, E, Helm, R, Johnson, R, and Vlissides, J.

Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

Figure 3: Decorated ordering strategies.

