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Chapter 1

From Scheme to Java

1.1 Introduction

At first glance, Java and Scheme appear to have little in common. Java is written in
notation similar to the widely-used C programming language, while Scheme is written
in parenthesized prefix notation. In addition, Java expresses computations primarily
in terms of operations attached to objects while Scheme expresses computations pri-
marily in terms of functions applied to values—mechanizing the familiar world of al-
gebra. In short, Java is a data-centered language while Scheme is a function-centered
language.

Nevertheless, Java and Scheme are surprisingly similar beneath the surface. In
this short monograph, we will discover how easy it is for a Scheme programmer to
learn to write good Java code. The only obstacles are learning Java notation and
learning how to organize programs in object-oriented (data-centered) form.

1.1.1 What is an Object?

Before discussing the specifics of Java’s object system, let’s define what an object is.
Within a computer program, an object consists of

• a collection of variables called fields representing the properties of a specific
physical or conceptual object, and

• a collection of designated operations called methods for observing and changing
the fields of that object.

No code other than the designated operations can access or modify object fields. The
fields and methods of an object are often called the members of the object. Each
member of an object has a unique identifying name.

4



CHAPTER 1. FROM SCHEME TO JAVA 5

To make the notion of object more concrete, let us consider a simple example.
Assume that we want to maintain a directory containing the office address and phone
number for each person in the Rice Computer Science Department. In Java, each
entry in such a directory has a natural representation as an object with three fields
containing the person’s name, address, and phone number represented as character
strings. We defer discussion about how to represent the directory itself until Section
1.4.

Each entry object must include operations to retrieve the name, address, and
phone number fields, respectively.

Let’s summarize the form of a directory entry as a table:

Fields:
String name;
String address;
String phone;

Methods:
String name();
String address();
String phone();

This tabular description is not legal Java syntax. We will introduce the actual syn-
tactic details later in this discussion.

The three methods name(), address(), and phone() do not take any explicit
arguments because they are invoked by sending a “method call” to an entry object,
called the receiver, which serves as an implicit argument for the method. In Java, the
code defining a method can refer to this implicit argument using the keyword this,
which is reserved for this purpose.

The syntax for method invocation in Java is quite different from the syntax for
function application in Scheme. Given an object o of some class C including the 0-ary
method m, the expression

o.m()

invokes the m method of object o. The object o in the method call above is called the
receiver because it “receives” the method call. (In the Java Language Specification,
the term target is used instead of receiver.)

In general, method invocations take arguments. The number and type of the
argument expressions in an invocation must match the method’s signature given in
its declaration. The the receiver o in a method call o.m(e1, ..., en) can be any
legal Java expression. Similarly, each argument ei can be any legal of expressions of
the type specified for that argument.
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Consider the following example: assume that a Java program can access an Entry

object e and needs to get the value of the name field of this object. The method
invocation

e.name()

returns the desired result. The accessor methods that are automatically generated
by DrJava are 0-ary. The equivalent Scheme expression is written

(Entry-name e)

Finger Exercise: In the DrJava programming environment, set the Language
Level to Elementary. Then type the text

class Entry {
String name;
String address;
String phone;

}

in the Definitions (top) pane, save it as the file Entry.dj0, compile it (using the
“Compile” button), and type the following statements in the Interactions pane:

Entry e = new Entry("Corky","DH 3104","x 6042");
e.name()
e.phone()

The first line defines a variable e as an Entry object with name field "Corky", address
field "DH 3104", and phone field "x 6042". The second line is an expression that
computes the name field of e. What value does the Java evaluator return for the name

field of e? The phone field of e? �

If we want to perform more interesting computations than constructing objects
and accessing the values of their fields, we need to introduce the primitive operations
for computing with familiar forms of data like numbers and strings.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

-5 + 3
-(5 + 3)
5 % 3
5./3.
5 / 0
5./0.
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3 + .1 * .1 - 3.
5 < 6
5. > 6.
"Cor" + "ky"
"DH" + " 3104"

directly in the Interactions pane. Did you get the answers that you expected? �

Java has the same precedence rules for expressions built from primitive operations
as C/C++, which roughly follow standard mathematical conventions. The precedence
of Java operations is explained in detail in Section 1.2.3.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

72. - 32. * 1.8
(72. - 32.) * 1.8
72. - 30. - 12.
72. - (30. - 12.)

Did you get the answers that you expected? �

Program statements have essentially the same syntax in Java as in the widely used
C language. The most common form of statement in Java is an assignment statement
that introduces a new variable:

type var = expr ;

In the preceding syntax template, type is a Java type name, var is a Java variable
name, and expr is an expression of type compatible with the type of var. The assign-
ment statement

int x = 5;

introduces the variable x and gives it the value 5. We used this form of statement in
an earlier Finger Exercise to define an Entry object.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
statements and expressions:

int x = 5;
x*x
double d = .000001;
double dd = d*d;
dd
dd*dd
1. + dd
1. + dd*dd
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Did you get the answers that you expected? �

Java includes all of the basic statement forms found in the C/C++ programming
language expressed in essentially the same syntax. In the remainder of this mono-
graph, we will introduce these statement forms as they are needed. Although Java
accepts most C/C++ syntax, many common C/C++ constructions are considered
bad style in Java.

Note that Java treats boolean as a distinct type from int, eliminating some
common sources of errors in C/C++. For example, the test expression in a conditional
statement (explained in Section 1.4.4 must be of type boolean.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

int x = 7;
if (x = 5) y = 0; else y = 10;
y

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax, replacinng ”=” in the test expression (x = 5) by ”==”. �

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

boolean flag = (x = 7);
flag

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax (replacinng ”=” in the right hand side of the definition of flag by ”==”). �

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

String first = "George";
String last = "Washington";
first + last
first + " " + last
first.concat(last)
first.concat(rest)
first.concat(" ").concat(rest)

Did you get the behavior that you expected? �
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Note that DrJava does not print the value of a Java expression if you type a semi-
colon following it. Java classifies variable bindings as expressions and they technically
can be embedded within an expression, but this usage is generally considered bad
style.

1.1.2 Classes: Templates for Creating Objects

Every Java program consists of a collection of classes—nothing else. A class is a
template for creating a particular form of object. A Java class definition corresponds
to a Scheme define-struct definition generalized to include all of procedures that
process objects of the defined class. In Java, all program code must be part of some
class.

Each object created by a class template contains the same members, each of which
is either a field or a method. A field is a “container” that holds a value. A method is
an operation on the fields of the object and any values that are passed as arguments
to the method. The objects created by a particular class template are called the
instances or objects of that class. Each instance contains the members specified in
the class template.

Each member of a class has a name consisting of a Java identifier, any sequence of
“alphanumeric characters” (letters, digits, and ) beginning with a letter or . A few
identifiers are reserved by Java for use as keywords. A complete list of the keywords
of Java is given in Chapter 1.2 which is an Appendix on the syntax of Java. For now,
the only keywords that concern us are:

abstract class float new void
boolean double int return
case else if then
char extends long this

But beware: you cannot use any keyword for a regular identifier. So you will need to
learn the list of keywords in Chapter 1.2 soon or you may trip over an inexpliciable
error involving using a keyword as an ordinary identifier.

For now, we will require all the identifiers used within a class to be unique, i.e.
you will not be allowed to use the same name for both a field and a method in a class.
We will gradually relax this restriction as we learn more of the Java language, e.g.,
in Section 1.10.6.

Let’s re-examine the Java class Entry defined in the first Finger Exercise above.
It consists of only three fields name, address and phone which must contain String

values.
The DrJava Elementary language level automatically creates four methods of the

class Entry including:

• a special constructor method
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Entry(String name, String address, String phone)

Figure 1: The Entry class

that creates and initializes Entry objects; and

• three accessor methods name(), address(), and phone() that extract from an
Entry object;

An instance (object) of the class Entry is created by an expression of the form

new Entry("SomeName", "SomeAddress", "SomePhone")

The three accessor methods generated by the Elementary language level are very
simple yet they illustrate the most important characteristic of object-oriented pro-
gramming: operations are attached to the data objects that they process. The methods
name(), address(), and phone() take no arguments yet they have access to the fields
of the Entry object to which they are attached.

Finger Exercise: In DrJava, open the file Entry.dj0 that you created in the
very first Finger Exercise. The following Java program text

class Entry {
String name;
String address;
String phone;

}

defining the Entry class should appear in the Definitions pane.
Compile the class by hitting the Compile button.
In the DrJava Interactions pane, try evaluating the following program text:

Entry e1 = new Entry("Corky", "DH 3104", "x 6042");
e1.phone()
Entry e2 = new Entry("Stephen", "DH 3102", "x 3814");
e2.phone()
e1.equals(e2)
Entry e3 = new Entry("Corky", "DH 3104", "x 6042");
e1.equals(e3)

�
We will explain the syntax of Java class definitions in more detail in Section 1.1.2.
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class Entry {
String name;
String address;
String phone;

/* methods */

/** Returns true if name matches keyName. */
boolean match(String keyName) {

return name.equals(keyName);
}

}

Figure 1.1: The expanded Entry class

1.1.3 Defining Instance Methods

The three primitive instance methods name, address and phone in class Entry all
simply return the value of a field from the object that received the method call.

Let us define another method for class Entry that does more computation. Assume
that we want to define an operation match for the class Entry that takes a string
argument keyName and determines whether it matches the name field of the specified
Entry object. We could include such a method definition within the definition of
class Entry as shown in Figure 1.1.3:

The match method is implemented using the equals method on the String field
name. Recall that the String class is built-in to Java. The equals method from the
String class takes an argument and returns true if (and only if) it is a String with
exactly the same contents as the receiver String object. Hence,

(new Entry("Corky","DH 3104","x 6042")) . match("Corky")

returns

true,

while

(new Entry("Corky","DH 3104","x 6042")) . match("Matthias")

returns

false.
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The code for the match method has access to the fields of the Entry object to which
they are attached even though this object is not explicitly passed as an argument to
the method. The Entry object e1 in the method call

e1.match(e2)

is called the receiver because it “receives” the method call. (In the Java Language
Specification, the term target is used instead of receiver.) The receiver is as an implicit
argument for the method. In Java, the code defining the method can refer to this
implicit argument using the keyword this, which is reserved for this purpose.

Warning The Java infix operator == can be used to compare objects, but the
results of such a comparison are problematic for many applications. On objects, the
== operator returns true if (and only if) the both arguments are exactly the same
object. Hence, if x is a variable of some object type T , the expression

x == x

returns

true

For distinct object arguments, the == operator returns false. Hence,

new Entry("Corky","DH 3104","x 6042") ==
new Entry("Corky","DH 3104","x 6042")

returns

false

because each occurrence of new creates a distinct object. For most Java object types
including String, the == operator is not a reliable mechanism for testing equality! For
example, Java does not guarantee that it creates only one copy of a String constant.

Finger Exercises

1. Add the code for the match method to your Entry class. Test your code in
the Interactions pane by evaluating some examples. You can archive test code
entered in Interactions pane by saving your Interactions history; right-click on
your mouse while it is over the Interactions pane. DrJava gives you an oppor-
tunity to edit this history (to eliminate erroneous entries) before saving it as a
file. Save your history in the file Entry.hist (DrJava automatically adds the
file extension .hist to the file name that you provide). �
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2. Modify your match method to use the == operator instead of the equals method.
Try running you archived tests stored in Entry.hist. If none of these tests fail,
devise some test cases where using == makes the test fail! Hint: the Java com-
piler only constructs one copy of a String constant, so repeated uses of a given
String all refer to same object. The DrJava interpreter, however, constructs a
new copy of a String constant for every occurrence. Hence a String constant
that appears in the DrJava Interactions pane is distinct from the same String

constant defined in a class in the Definitions pane. Moreover, different occur-
rences of the same String constant in the Interactions pane refer to different
objects. Save your updated test history in the file Entry.hist. �

Java Design Rule: There are only two valid uses of the == operator:

• to compare values of primitive type; and

• to test object identity (not equality!).

The second use is relatively uncommon.

In the code for the Entry class, the constructor and accessor methods all refer to
fields of this, the hidden parameter bound to the object that is the receiver of the
method invocation. For example, the expression

this.name

returns the value of the name field of the object this. In constructor invocations,
this is bound to the newly allocated object.

One attractive feature of Java is that the method syntax mandates a contract
(declaration of input types and output type) as part of the method header. For
example, the method header

boolean match(String keyName)

indicates that the match method takes a single String argument and returns a
boolean value. In contrast to Scheme, the type of each method argument is declared
in the method header.

1.1.4 Writing and Maintaining Tests

In Scheme we practiced test-driven development by writing tests for a program using
the check-expect operation before we wrote the code for the program. In Java,
software developers use testing frameworks to perform the same task. In fact, OO
languages like Java are particularly well-suited to test-driven development because



CHAPTER 1. FROM SCHEME TO JAVA 14

programs are expressed as a collection of small largely independent units of code,
namely classes. In writing and maintaining a large program, the software developers
need to devise and maintain tests for every non-trivial method and run all tests
every time the code base (the files containing program text) is changed to ensure
that the changes have not “broken” the program. Test are better expressed as classes
where test methods silently return (assuming no failures) than they are as interactions
histories where the output must be carefully expected to determine where or not the
tests passed. JUnit only updates a progress bar as it runs as long as all tests pass.

When running all of the archived tests for a large program, the software developers
only want to know when a test fails. If a program modification has been performed
correctly, all of the archived tests will succeed. Hence, we want a test manager
application that runs all the tests for a program and only reports the errors (failed
tests) that it finds. The most widely used test manager (also called a testing framwork)
for Java is called JUnit. JUnit is a conventional Java program that can be run from
the command line but DrJava has integrated JUnit so that it can be conveniently
run inside DrJava. Moreover, DrJava helps the programmer write unit test classes by
generating templates for such classes.

Let’s use DrJava to help us write a test class for the Entry class. The second
command in the File menu is called New JUnit Test Case .... When we depress this
menu item, DrJava creates a new class in a new file (not yet written to disk) after
popping up a small window asking for the name of the class. Let’s chose the name
EntryTest. The new file initially contains the following text:

import junit.framework.TestCase;

/**
* A JUnit test case class.
* Every method starting with the word "test" will be called when running
* the test with JUnit.
*/
public class EntryTest extends TestCase {

/**
* A test method.
* (Replace "X" with a name describing the test. You may write as
* many "testSomething" methods in this class as you wish, and each
* one will be called when running JUnit over this class.)
*/

public void testX() {
}

}

Most of the generated text is comments instructing us what to do. Since we have
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import junit.framework.TestCase;

/** A JUnit test case class for the Entry class. */
public class EntryTest extends TestCase {

/** Tests the match method. */
public void testMatch() {

Entry e = new Entry{"Corky", "DH 3104", "x 6042");
assertTrue("match should succeed", e.match("Corky"));
assertTrue("match should fail", ! e.match("Henry");

}
}

Figure 1.2: A JUnit test class for the Entry class

only defined the equivalent of a Scheme define-struct statement augmented by a
single explicitly defined method match, there is little to test. We create two test cases
for match, including where the match should succeed and one where it should fail.

The assertTrue method takes two arguments: a String name used by JUnit to
identify the test when reporting a failure and a boolean expression that evaluates to
true iff the test succeeds.

If we run this test class using the unit test runner provided by DrJava it will report
that all test passed successfully. Of course, our only test method, named testX at
this point, does nothing, but it succeeds because it does not contain any failing
tests. As soon as we define some methods to process IntLists, we will define some
corresponding test methods, renaming our vacuous testX method in the process.

The first line of the EntryTest file contains an import statement that tells Java
to include the class junit.framework.TestCase in the compiled program. DrJava
includes all of the libraries packaged with the Java JDK plus the JUnit library, which is
developed, maintained, and distributed by junit.org, much as DrJava is developed,
maintained, and distributed by drjava.org, which is hosted on the Rice University
Computer Science Department web server.

Finger Exercise: In the DrJava programming environment at Elementary Lan-
guage Level, open the file Entry.dj0 and create a test class EntryTest using the
DrJava New JUnit Test Case command that looks like the class in Figure 1.1.4. Run
this test class, make sure that it works, and save is as file EntryTest.dj0. �

The assertTrue method is very well-suited to testing operations that return a
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boolean value. But in many cases, we need to test method invocations that return val-
ues that are not boolean. Such tests can clearly be expressed by assertTrue invoca-
tions (using equals) but the assertEquals method is more convenient. assertEquals
takes three arguments: a String name, the expected answer, and the expression be-
ing evaluated as a test. Since Java is a staticallly typed language, there are nine
different versions of assertEquals so the method (family) can be to check a result
of any type (any of the eight primitive types plus Object.

1.2 Java Mechanics

1.2.1 Notation and Syntax

In Scheme, programs are constructed from expressions. In contrast, Java programs
are constructed from statements. Statements are program phrases that do not have
values, similar to Scheme expressions like (define ...) that return the dummy
value (void). Nevertheless, many Java statements contain embedded expressions, so
let us look briefly at Java expressions.

1.2.2 Java Expressions

In Java, arithmetic, boolean, and String expressions are written in conventional
mathematical infix notation, adapted to the standard computer character set (called
ASCII). For example, the Scheme expression

(and (< (+ (* x x) (* y y)) 25) (> x 0))

is written in Java as

(x*x + y*y > 25) && (x > 0)

The syntax of Java expressions is patterned after the C programming language. Like
C, Java uses the symbol && for the “and” operation on boolean values (true and
false) and the symbol == for the equality operation on numbers. (Warning: the
symbols & and = are used in C and Java for other purposes. You have already seen
the primary use of the of = symbol, which is defining the values of variables.)

The following table lists the major infix operators provided by Java:
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+ addition and String concatenation
- subtraction
* multiplication
/ division
% mod (remainder from integer division)
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
!= not equal
&& and
|| or

The Java arithmetic operators all perform the indicated operations using computer
arithmetic instead of genuine arithmetic. Computer arithmetic does not exactly con-
form to the standard mathematical conventions. Calculations involving real numbers
(Java types float and double) are approximate; the computer rounds the true re-
sult to the nearest real number expressible using the number of digits provided in the
standard machine representation (scientific notation with a fixed number of digits for
the fraction and exponent). Integer calculations are done exactly provided that the
answer is an integer and that it can be represented using 31 binary digits plus a sign.1

Note that integer division always produces integer answers (unless you try to divide
by zero which is an error). For example, the expression

5/3

produces the result

1

which is the quotient of 5 divided by 3. Integer division truncates the true rational
result, dropping the digits to the right of the decimal point. Similarly, The expression

5%3

produces the result

2

which is the remainder of 5 divided by 3. In Java program text, spaces between
symbols are ignored; the expression

5 / 3

1As we will explain shortly, Java supports several different sizes of integer representation; 31
binary digits plus sign is the default for integer constants.
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is equivalent to the expression

5/3

Finger Exercise: In the DrJava programming environment, try evaluating the
following expressions in the Interactions pane:

5/3
5 % 3
5./3.
5 / 0
5./0.
5 < 6
5. < 6.
3 + .1 * .1 - 3.

Did you get the answers that you expected? �

All of the binary infix operators in Java are either arithmetic (+, -, ...) relational
(< ==, ...), or boolean (&&, ||, ...) except for + when it is used to concatenate strings.
If either argument to + is of String type, then Java converts the other argument
to a String. Object values are coerced to type String using their toString()

methods. As we explain in Section ??, every object has a toString() method. The
concatenation operator converts primitive values to strings using built-in conversion
routines that we will discuss later.

The order in which arguments appear and the use of parentheses in mixed integer
and string expressions critically affects the conversion process. For example, the
expression

9 + 5 + 1 + "S"

evaluates to the String "15S" while the expression

9 + (5 + (1 + "S"))

evaluates to the String "951S". The association rules for Java expressions are ex-
plained in Section 1.2.3.

Java also supports the unary prefix operators - (arithmetic negation) and !

(boolean “not”) used in conventional mathematical notation. Parentheses are used
to indicate how expressions should be decomposed into subexpressions.

Finger Exercise: If the DrJava Interactions pane, try evaluating the following
expressions:
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-5 + 3
-(5 + 3)
! (5 < 6)

�

Conditional Expressions

The only pure expression form in Java that deviates from conventional mathematical
notation is the conditional expression notation

test ? consequent : alternative

borrowed from C. This expression returns the value of consequent if test is true and
the value of alternative if test is false. It corresponds to the Scheme cond expression

(cond [test consequent] [else alternative])

or, alternatively,

(if test consequent [alternative])

Note that when test is true, alternative is not evaluated. Similarly, when test is
false, consequent is not evaluated. Hence, the expression

(2 < 0) ? 2/(1 - 1) : 0

does not divide 2 by 0. The test expression must be a boolean value, true or false.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

(2 < 0) ? 2/(1 - 1) : 0
(0 < 1) ? "foo" : "bar"
17 ? true : false

The last example produces a syntax error because 17 is not a boolean value. �

Conditional expressions are hard to read unless they are short and cleanly format-
ted. Moreover, in many cases the code can be written more clearly using conventional
if statements, which are explained in Section 1.4.4. In DrJava program text, condi-
tional statements are forbidden at the Elementary and Intermedate levels.
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1.2.3 Precedence of Operations

Since Java uses conventional infix notation for expressions it relies on the notion of
precedence to determine how expressions like

12 * 5 + 10

should be interpreted. The Java operations given in the preceding subsection are
divided into the following precedence groups:

prefix operators - !
multiplicative * / %
additive + -
relational < > >= <=
equality == !=
logical and &&
logical or ||
conditional ? . . . :

from highest to lowest. A higher precedence operator has greater “binding power”.
For example, the expression

72. - 32. * 1.8

is equivalent to

72. - (32. * 1.8)

because * has higher precedence than infix -.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

72. - 32. * 1.8
(72. - 32.) * 1.8

�

All of infix operators listed above are left-associative: when infix operators of equal
precedence are chained together, the leftmost operator has precedence. For example,

72. - 30. - 12.

is equivalent to

(72. - 30.) - 12.
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Parentheses can be used to override the built-in precedence and associativity of op-
erators. Hence,

(72. - 32.) * 1.8

equals 40*1.8. Similarly,

72. - (30. - 12.)

equals

72. - 18.

It is a good idea to use parentheses if you have any doubts about the precedence
relationship between consecutive operators. The judicious use of parentheses can
make complex expressions easier to read.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

72. - 30. - 12.
72. - (30. - 12.)

�

1.2.4 Java Statements

Since the Java expression language is not very rich, Java programs express com-
putations as sequences of statements that bind variables and fields rather than as
compound expressions. The most common form of Java statement is an assignment
statement

type var = expr ;

where type is a Java type name, var is a Java variable name, and expr is an expression
of type compatible with the type of var. The assignment statement

int x = 5;

asserts that “the variable x has value 5”.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
statements and expressions:
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int x = 5;
x*x
double d = .000001;
double dd = d*d;
dd
dd*dd
1. + dd
1. + dd*dd

Did you get the answers that you expected? �

Java variable names and type names must be identifiers. An identifier is any
sequence of “alphanumeric characters” (letters, digits, and ) beginning with a letter
or —except for the following keywords, which are reserved and may not be used as
variable names or type names:

abstract default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try
case extends int short void
catch final interface static volatile
char finally long super while
class float native switch
const for new synchronized
continue goto package this

Java is case-sensitive; the variable X is distinct from the variable x. There are three
kinds of variables in Java: class fields, method parameters, and local variables. Fields
and method parameters are discussed in detail in the next subsection. We will defer
a discussion of local variables until Section 1.10.4.

Java includes all of the basic statement forms found in the C programming lan-
guage expressed in essentially the same syntax. In the remainder of this monograph,
we will introduce these statement forms as they are needed. Although Java accepts
most C syntax, many common C constructions (such as embedding an assignment
inside in an expression) are considered bad style in Java.

1.2.5 Capitalization and Commenting Conventions

By convention, Java programs are written entirely in lower case characters with three
exceptions.

• The first letter of class names are capitalized to distinguish class names from
member names.
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• The first letter in each word of a multi-word identifier after the first is capi-
talized. For example, the built-in Java class Object includes a method called
toString() that we will discuss later. The capital S signifies the beginning of
a word within the multi-word name toString().

• The names of constant static final fields (discussed in Section ??) are written
entirely capital letters. We have not yet discussed static fields or the final

attribute because neither feature is supported in the Elementary language level
of DrJava and final is not supported even in the Intermediate language level.
We will introduce the static attribute in Section ?? and the final attribute
in Section ??.

These conventions are not enforced by Java compilers, but it is considered bad style
to violate them. A related convention is to never use the special character $ in a
name; this character is reserved for the use of the Java compiler. Unfortunately, most
Java compilers do not enforce this convention.

Java relies on same commenting conventions as those in C/C++. A comment that
is confined to a single line begins with the character sequence // and ends at the end
of the line. Longer comments must be enclosed between the opening “bracket” /*

and “closing” bracket */. Examples of both form of comments appear in Section 1.4.
Note that a bracketed comment can appear in the middle of a line of code.

Finger Exercise: add both forms of comment to the Entry class from the pre-
ceding exercise. �

1.3 Java Data Types

Java programs manipulate two fundamentally different kinds of values: primitive
values and object values.

1.3.1 Primitive Types

All primitive values belong to one of eight primitive types: int, float, boolean,
char, byte, short, long, and double. Four of these types designate different sizes
of bounded integers:

• byte contains the integers ranging from -128 to 127;

• short contains the integers ranging from -32768 to 32767;

• int contains the integers ranging from -2147483648 to 2147483647; and
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• long contains the integers ranging from

-9223372036854775808

to

9223372036854775807.

In practice, only three of these primitive types are widely used: int, boolean, and
double.

In many programming contexts, it is convenient to treat primitive values and ob-
ject values uniformly. Java accommodates this practice by providing a built-in wrap-
per class for each primitive type. A wrapper class consists of single field containing
a corresponding primitive value plus a variety of methods for manipulating wrapped
objects and the corresponding primitive values. The wrapper class corresponding to
each primitive type is given in the following table:

Primitive Type Wrapper Type

int Integer
float Float
boolean Boolean
char Character
byte Byte
short Short
long Long
double Double

Note that the wrapper class names follow a uniform naming convention (the prim-
tive name with a capitalized first letter), except for Integer and Character. In most
contexts, Java automatically converts between corresponding primitive and wrapped
values. A program can explicitly create a wrapped value by using the constructor
invocation

new wrapperClassName( primitiveValue )

where wrapperClassName is any wrapper class name and primitiveValue is an expres-
sion denoting a corresponding primitive value. For example,

new Integer(0)

creates an Integer object corresponding to the int value 0.
The boolean type has two values true and false. The char type supports the

Unicode character set which includes all conventional ASCII characters plus almost
any foreign character imaginable. The char type is rarely used in Java programs
because a flexible String object type is built-in to the language. The remaining
two types float and double are used for approximate computations involving real
numbers; they denote standard IEEE 32-bit and 64-bit formats, respectively.
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Numeric Constants Java interprets unadorned integer constants as values of type
int. Long integer constants are indicated by attaching the suffix L to the number.
For example, the constant 9223372036854775807L can be used in Java program text,
while the same constant without the L is an error because it is too big to be an int.
The double type is the default type for any floating point constant. On modern
machines, there is little reason to use the less precise float.

Conversions Between Types Java will automatically convert any numeric type
to a more “general” numeric type demanded by context. The following list gives the
primitive numeric types in increasing order of generality:

byte→ short→ int→ long→ float→ double

Note that the notion of generality here is imperfect in some situations. The conversion
of a long to a float, for example, will often lose precision. In fact, even the conversion
of a really large long value to a double can lose precision.

Java provides explicit conversion operators called casts to convert a numeric type
to a less general type. A cast is simply a type name enclosed in parentheses used a
prefix operator. For example, the following expression casts the int constant 127 to
the type byte

(byte)127

When converting from one bounded integer type to another, Java silently truncates
leading digits if the output type is shorter than the input type. Watch out!

Finger Exercise: In Java, the maximum long value is denoted Long.MAX VALUE.
(This notation will be explained in detail in Section 1.6.1. In DrJava Interactions pane,
cast the value of Long.MAX VALUE to double. What do you get? Cast this value back
to type Long. Did the you get back your original result? What is going on?

Try casting Long.MAX VALUE - 511 to double and back to long. Do you get the
same result? How does this result compare to (long) (double) Long.MAX VALUE.
Try casting the maximum Long.MAX VALUE - 511 to double and back to long..

Cast Long.MAX VALUE to type float and back to long. Do you see a pattern
emerging? Try casting Long.MAX VALUE - Integer.MAX VALUE to float and back
to long. A float has a fraction consisting of 23 binary digits plus a sign bit while
a long has 63 binary digits plus a sign bit. Subtracting Integer.MAX VALUE from
Long.MAX VALUE simply clears (zeroes) the rightmost 31 binary digits of Long.MAX VALUE

and hence has no impact on its value when converted to a float.
Java accepts integers expressed in hexadecimal (base-16) notation if they are pre-

ceded by the prefix 0x. Hence, Integer.MAX VALUE == 0x7FFFFFFF and { Long.MAX VALUE

- Integer.MAX VALUE == (Long.MAX VALUE >> 31) << 31. } Check this cacula-
tion in the Interactions pane. The expression (x >> 31) << 31 for any long value x

clears the rightmost 31 bits of x. How many digits of Long.MAX VALUE can you clear
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(using shift operations) before casting to float affects its value? �

1.3.2 Object Types

Object values are created by instantiating classes, which may either be built-in or
program-defined. Classes are organized in a strict hierarchy with the special built-in
class Object at the top. Every class C except Object has a unique parent in the
hierarchy called the superclass of C. A descendant in the class hierarchy is called a
subclass. Each subclass of a class C includes all of the members (fields and methods)
of C and possibly additional members. For this reason, we say that each immediate
subclass of (child of) C extends C. Note that subclass relation is transitive and re-
flexive. If class A is a subclass of class B and class B is a subclass of class C then
A is a subclass of C (transitivity). In addition, every class A is a subclass of itself
(reflexivity).

We will reserve the term extends to describe the immediate subclass (child) rela-
tion: A extends B iff A is an immediate subclass of B. Hence, the extends relation
is neither transitive nor reflexive. Since Object is the top class of the hierarchy, all
classes are subclasses of Object.

For example, the built-in classes Integer and Float extend the built-in class
Number which extends Object. Hence, the superclass of Integer is Number, the
superclass of Float is Number, and the superclass of Number is Object.

Object values are actually references to objects. For this reason, two different
fields can be bound to exactly the same object. In Java, objects are never implicitly
copied. When a field or method parameter v is bound to an object o, the value of
v is a reference to the object o, not a copy of o! Scheme follows exactly the same
conventions with regard to copying program data.

Every Java class C has an associated type C consisting of all instances of class
C and all of its subclasses. Hence, the type Object contains all object values. The
built-in class String has the class Object as its superclass. Since the class String

has no subclasses, the only values of type String are instances of the class String. In
contrast, the built-in class Number is a child of class Object and has several subclasses
including Integer and Float. Hence, all instances of the classes Integer and Float

are values of type Number.
In Java, every field and method has a declared type given as part of its definition.

For a method, the declared type includes the type of the result and the types of the
parameters.

Java determines the type of every program expression using a simple set of rules
and confirms that

• the value assigned to a field is consistent with the field’s declared type;
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• the values passed as arguments to a method are consistent with the correspond-
ing parameter types;

• the value returned by a method is consistent with the declared return type of
the method; and

• the member name in a field reference or method invocation is compatible with
the declared type of the receiver.

We will discuss these “type-checking” rules in more detail in Section 1.10.3.

1.4 The Union and Composite Patterns

In our department directory example, an object of type Entry only has one form,
namely an instance of class Entry. If we were designing the data for a more compre-
hensive directory such as a city phone directory, we would need more than one form
of entry. At a minimum, we would need entry formats suitable for business listings,
government listings, and residential listings. For such a phone directory, we might
define an entry as follows.

A CityEntry is either:

• a BusinessEntry(name,addr,phone,city,state),

• a GovernmentEntry(name,addr,phone,city,state,gov), or

• a ResidentialEntry(name,addr,phone),

where name is a string specifying the name for the listing, addr is a string specifying
the street address for the listing, phone is a string specifying the phone number (with
area code) for the listing, city and state are strings specifying the city and state for
the listing, and gov is a string specifying the government entity for that the listing,
e.g. the ”City of Houston”.

The BusinessEntry and GovernmentEntry forms include city and state informa-
tion because businesses and government agencies that serve clients in cities outside
their local calling area often elect to have their phone numbers included in the direc-
tories of other cities (in addition to the cities where they are located). In addition,
government listings include a string specifying the government entity to which they
belong. For example, a listing for the Federal Bureau of Investigation would specify
the ”U.S. Government” as the gov field.

In Scheme, we would represent such an entry data type by defining three different
structures:
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;; a CityEntry is either:
;; a BusinessEntry
;; (make-BusinessEntry name addr phone city state),
;; or a GovernmentEntry
;; (make-GovernmentEntry name addr phone city state gov),
;; or a ResidentialEntry
;; (make-ResidentialEntry name addr phone).

(define-struct BusinessEntry (name addr phone city state))
(define-struct GovernmentEntry (name addr phone city state gov))
(define-struct ResidentialEntry (name addr phone))

Note that the type CityEntry consisting of the union of the types BusinessEntry,
GovernmentEntry, and ResidentialEntry is not defined in program text because all
union types in Scheme are implicit.

In Java, we can define the CityEntry type by introducing a “dummy” CityEntry

class that we extend by “concrete” classes2 for each different form of Entry data. The
CityEntry class is abstract because there are no objects in our data model that be-
long to City Entry but not to one of the subtypes .... If CityEntry is concrete, then it
is not the union of BusinessEntry, GovernmentEntry, and ResidentialEntry. This
technique, which is widely used in object-oriented programming, is called the union
pattern. In this pattern, an abstract class serves as the root of a hierarchy of subclasses
called variants, which are the component types of the union. In this example, there
are three variant classes: BusinessEntry, GovernmentEntry, ResidentialEntry.
The following Java code defines the city-entry type:

Note that each concrete class includes exactly the same fields as the corresponding
Scheme structure definition. The pivotal difference between the Java code and the
corresponding Scheme code is the presence of the abstract class CityEntry in the
Java Code identifying the union type which is left implicit in Scheme.

The Java code in the CityEntry example above involves two concepts that we
have not discussed before.

• The attribute abstract attached to the class CityEntry indicates that CityEntry
is a “dummy” class that cannot be instantiated. The class CityEntry is defined
solely to group the concrete classes BusinessEntry, GovernmentEntry, and
ResidentialEntry as a type that includes all three kinds of data.

• The concrete classes BusinessEntry, GovernmentEntry, and ResidentialEntry

are the only subclasses of the class CityEntry. Hence, the only values of type
CityEntry are the instances of the classes BusinessEntry, GovernmentEntry,
and ResidentialEntry.

2Any class that is not declared as abstract is “concrete”.
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/** a CityEntry is either:
* (i) a BusinessEntry
* new BusinessEntry(name,addr,phone,city,state),
* (ii) a GovernmentEntry
* new GovernmentEntry(name,addr,phone,city,state,gov), or
* (iii) a ResidentialEntry
* new ResidentialEntry(name,addr,phone).
*/
abstract class CityEntry { }

class BusinessEntry extends CityEntry {

/* fields */
String name;
String address;
String phone;
String city;
String state;

}

class GovernmentEntry extends CityEntry {

/* fields */
String name;
String address;
String phone;
String city;
String state;
String government;

}

class ResidentialEntry extends CityEntry {

/* fields */
String name;
String address;
String phone;

}

Figure 1.3: The CityEntry union class hierarchy
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The following expression creates a BusinessEntry for Rice University

new BusinessEntry("Rice University", "6100 Main Street",
"713-348-8101", "Houston", "Texas")

This syntax is wordy but straightforward. Note that Java requires the keyword new

in front on each constructor invocation.

Finger Exercise Enter the four preceding class definitions into the Definitions
pane of DrJava and save this program in the file CityEntry.dj0 Compile this program
and evaluate the following expressions in the Interactions pane:

BusinessEntry e1 = new BusinessEntry("Rice University", "6100 Main St.",
"713-527-8101", "Houston", "TX");

ResidentialEntry e2 = new ResidentialEntry("Robert Cartwright",
"3310 Underwood St.", "713-660-0967");

e1.name()
e2.name()

Did you get the results that you expected? �

1.4.1 Defining Instance Methods on a Union Type

Let us define a method for class CityEntry that makes sense for all instances of
the type CityEntry. Specifically, let us define a method nameStartsWith(String

prefix) that determines whether a putative prefix is actually a prefix (matches an
intial segment) of name. Fortunately, the String class is very rich and includes a
method called startsWith(String prefix) that determines if a putative prefix is
actually a prefix of the receiver. Hence, we can define such a method in each concrete
subclass of CityEntry by adding the following text to the body of each concrete class:

/** Returns true if prefix is actually a prefix of the field name. */
boolean nameStartsWith(String prefix) { return name.startsWith(prefix); }

The complete code for the expanded ResidentialEntry class appears in Figure
1.4.

If we add this code to each of the three subclasses, then nameStartsWith is
defined on receivers with types that match one of the three subclasses, but is not
defined on type CityEntry. Why? Because nameStartsWith is not a member of
the class CityEntry. Trying to execute o.nameStartsWith(‘‘Cor’’) for some vari-
able/expression o of type CityEntry is a static type error. To rectify this problem,
we must define startsWith(String prefix) as an abstract method of CityEntry.
An abstract method is a method header without a body. The code for the expanded
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class ResidentialEntry extends CityEntry {

/* fields */
String name;
String address;
String phone;

boolean nameStartsWith(String prefix) { return name.startsWith(prefix); }
}

Figure 1.4: The expanded ResidentialEntry class with method nameStartsWith

.

abstract class CityEntry {

abstract boolean nameStartsWith(String prefix);
}

Figure 1.5: The CityEntry class with method nameStartsWith
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CityEntry class is given in figure 1.5. Note that the definition of nameStartsWith
could not have been hoisted into class CityEntry unless the name field was hoisted
as well. The latter was a prerequisite to the former.

Finger Exercises

1. Open your file CityEntry.dj0 in DrJava. Add a definition for nameStartsWith
in each of three concrete subclasses and save your expanded file as CityEntry.dj0.
Create a JUnit test class CityEntryTest to test the four classes forming the
CityEntry union, make sure that it works, and save it as CityEntryTest.dj0.
�

2. Make sure that your expanded file (from the preceding exercise) CityEntry.dj0
is open in the DrJava Definitions pane. Add the declaration for the abstract

method nameStartsWith to the abstract class CityEntry. Add additional
tests to the class to confirm that the nameStartWith method for type CityEntry
works and save the expanded test file as CityEntryTest.dj0. �

1.4.2 Member Hoisting

The preceding Java program can be improved by eliminating duplicated code in the
subclasses extending CityEntry. The concrete classes forming a union are called
variants. Note that the fields name, address, and phone and the same method defini-
tion for nameStartsWith appear in all three variants of the abstract class CityEntry.
These repeated member definitions can be hoisted into the abstract class CityEntry

yielding the Java code shown in Figure 1.6
Note that we cannot hoist the nameStartsWith method definition without hoist-

ing the field name. Otherwise, the definition of nameStartsWith would be rejected as
ill-formed by the compiler because name is not defined. Finger Exercise Open your

saved file CityEntry.dj0 and revise the code to hoist the members name, address,
phone, and nameStartsWith. Replay the tests stored in CityEntryTest.dj0 to con-
firm that your refactoring was successful. Note that your refactoring changed the
implementation of CityEntry without changing its visible behavior. Save the revised
program file as CityEntry.dj0.

Evaluate the following statements/expressions in the Interactions pane.

CityEntry e1 =
new ResidentialEntry("John Doe", "3310 Underwood", "713-664-4873");

CityEntry e2 =
new ResidentialEntry("Jane Smoth", "3210 Drummond", "713-666-8809");
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abstract class CityEntry {

/* fields */
String name;
String address;
String phone;

boolean nameStartsWith(String prefix) { return name.startsWith(prefix); }
}

class BusinessEntry extends CityEntry {

/* fields */
String city;
String state;

}

class GovernmentEntry extends CityEntry {

/* fields */
String city;
String state;
String government;

}

class ResidentialEntry extends CityEntry { }

Figure 1.6: The CityEntry class with hoisted members



CHAPTER 1. FROM SCHEME TO JAVA 34

GovernmentEntry e3 =
new GovernmentEntry("City Hall", "901 Bagby", "713-837-0311", "Houston",
"Texas", "Houston City");

e3.government()
CityEntry e4 = e3;
e4.government()
e1.address().equals(e2.address())
e3.nameStartsWith("City");
e2.nameStartsWith("Jane");
e1.nameStartsWith("John");

Did you get the results that you expected (including errors)? Add tests corresponding
to the code that worked to the class CityEntryTest and save the revised file as
CityEntryTest.dj0. �

Finger Exercise In the preceding code, the abstract class CityEntry has three
concrete subclasses: ResidentialEntry, BusinessEntry, and GovernmentEntry. By
applying some very simple program transformations, you can eliminate the dupli-
cation of fields by inserting a new abstract class NonResidentialEntry between
CityEntry and the concrete subclasses BusinessEntry and GovernmentEntry hoist-
ing the common members of these concrete classes. Open the file RevCityEntry.dj0

in DrJava and revise it by adding the abstract class NonResidential Entry. Save the re-
vised program in the file RevCityEntry.dj0. After this revision, the class CityEntry
still has only three concrete subclasses but only one of them is an immediate subclass.
The other immediate subclass is NonResidentialEntry. Test your code using Dr-
Java. Run your test cases in CityEntryTest to ensure that the revised code works.
�

Member hoisting is a special form of code code factoring. Code factoring is any
transformation that eliminates repeated code. In functional languages like Scheme,
the standard code factoring is typically accomplished by introducing a new λ-abstraction
with a repeated code pattern as its body. Each instance of the repeated pattern is
replaced by an appropriate call on the new abstraction. In some cases, the arguments
to the pattern are procedures. This form of code factoring can be implemented in
several different ways in Java. If all of the code repetitions appear within a class
hierarchy for which the programmer has control of the source, then a method can
be introduced in the most restrictive subclass that includes all of the occurrences
of the repeated pattern. Each occurrence can be replaced by an invocation of the
introduced method. In some cases, the arguments to the method are command or
strategy objects (discussed in Section 1.9) representing procedures.
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Java Design Rule: never repeat code in the variant classes in a union type.
Hoist any repeated code into methods defined in an abstract superclass.3

1.4.3 The Composite Pattern

Let’s return to our department directory example and show how to use the union
pattern to represent department directory data.

A DeptDirectory is either:

• an Empty directory, or

• a composite directory Cons(e, d) where e is the first Entry of the directory
and d is the rest of the directory.

In Scheme, we could implement this definition using the following collection of
structures:

;; a DeptDirectory is either:
;; the empty directory (make-Empty), or
;; the non-empty directory (make-Cons Entry DeptDirectory)
(define-struct Empty ())
(define-struct Cons (first rest))

;; an Entry is (make-Entry String String String)
(define-struct Entry (name address phone))

Note that the preceding Scheme code leaves most of the corresponding data definition
unstated! It never mentions the new type DeptDirectory. It does not express the
fact that instances of Empty and Cons are elements of the type DeptDirectory, nor
does it state that the first and rest fields of a Cons must be of type Entry and
DeptDirectory, respectively. Similarly, it fails to state that the fields name, address
and phone are all strings. In Scheme, we must compose comments to communicate
this information. Unfortunately, since these comments are not code they are not
checked for consistency.

In Java, each new type of data is represented by a class. Since the DeptDirectory
type has two variants, we must use the union pattern to represent this type. The
following collection of class definitions relies on the union pattern to define the

3In pathological cases, some repeated code may not be subject to factoring because of conflicts
among possible factorings. For example, variants A and B may share code for method m while variants
B and C share code for method n. In this case, either the code for method m or the code for method n
can be hoisted but not both. More complex factoring methods are possible (using, for example, the
strategy pattern discussed in Section 1.9), but they are typically not worth the complication. Some
leading edge OO languages like Scala incorporate a restrictive form of multiple inheritance called
traits that largely overcomes this problem.
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DeptDirectory type. Since the DeptDirectory type is implemented by an abstract
class, we will prepend the name DeptDirectory with the letter A to indicate that the
class is abstract.

/** A DeptDirectory is either:
* (i) the empty directory new Empty(), or
* (ii) the non-empty directory new Cons(Entry,DeptDirectory)
*/
abstract class DeptDirectory {}

class Empty extends DeptDirectory {}

class Cons extends DeptDirectory {
Entry first;
DeptDirectory rest;

}

The Java code is slightly wordier, but it captures all of the information in the data
definition. Moreover, the extra text in the Java code simply provides the type infor-
mation that is missing in the Scheme code (and can only be specified in comments).
The data definition comment in the preceding Java code helpful but technically it is
redundant.

The class Empty contains no fields, just like the corresponding Scheme struct.
The class Cons contains two fields first and rest akin to the two fields in the cor-
responding Scheme struct. Similarly, the Entry class contains three fields name,
address, and phone just like the Scheme struct Entry given above. The abstract
class DeptDirectory is extended by only two classes: Empty and Cons. Hence,
DeptDirectory is the union of Empty and Cons.

When Unions are Composite The use of the union pattern in the DeptDirectory
example has an extra feature not present in the preceding CityEntry example. One of
the variants of the union class DeptDirectory includes a field of type DeptDirectory
which makes the structure of the union class self-referential. Since self-referential
structures are ubiquitous in Scheme (and other functional languages), this feature is
not at all surprising to programmers familiar with functional programming. In the
OOP (“object-oriented programming”) community, which has strong historical ties
to imperative programming, this feature is viewed as distinctive because it implies
that methods that process the union class are naturally recursive. For this reason,
the OOP community assigns a distinct pattern name, namely composite pattern, to
the the special case of the union pattern where self-reference is present in the data
definition. We will use this terminology in the remainder of the monograph.

The following expression creates a DeptDirectory containing the address and
phone information for Corky and Zung:
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new Cons(new Entry("Corky","DH 3104","x 6042"),
new Cons(new Entry("Zung","DH 3098","x 3835"), new Empty()))

This syntax is wordy but straightforward. Don’t forget to include the keyword new

at the front of each constructor invocation!

1.4.4 Defining Instance Methods for a Composite Class

In Section 1.4.1, we showed how to define simple (instance) methods for the individual
class Entry. But we did not show how to express operations that process all of the
different forms of data defined by a composite hierarchy. Since each different form
of data in a composite hierarchy is represented by a distinct concrete class, we can
write a separate method definition for each kind of data.

Consider the following example. Assume that we want to define a method

String firstAddress(String name)

on DeptDirectory that returns the address for the first person in the directory if
the directory is non-empty and the null reference null if it is empty. We can write
separate definitions for the method firstAddress in the concrete classes Empty and
Cons as follows:

class Empty {
...
String firstAddress() { return null; }

}

class Cons {
...
String firstAddress() { return this.first.address(); }

}

Now assume that x is a variable of type DeptDirectory. If we try to invoke
the method firstAddress on x, Java will reject the code as erroneous because the
class DeptDirectory does not contain a method named firstAddress. How can we
enlarge the definition of firstAddress so that it applies to the class DeptDirectory?

The answer is that we declare the method firstAddress in the class DeptDirectory
as an abstract method:

abstract class DeptDirectory {
...
/* firstAddress() returns the first address in a DeptDirectory;

it returns null if the DeptDirectory is empty */
abstract String firstAddress();

}
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An abstract method is a method without a body. Abstract methods can only ap-
pear in abstract classes. Any class containing an abstract method must be declared
abstract because it cannot be instantiated. Every concrete class extending an ab-
stract class must provide concrete definitions for the abstract methods it inherits.
This rule guarantees that abstract methods are never attached to objects.

Let us illustrate the process of defining a method over a composite class hierarchy
in more detail by defining a method

String findAddress(String name)

on DeptDirectory that finds the address for the person identified by name, assuming
that name is in the directory.

Explicit If Statements

To write the findAddress method, we need to introduce a new form of statement
which supports executing different code blocks within a method depending on the value
of a boolean expression. Up to now, we have managed to support different execution
paths through a program solely by dynamic dispatch: selecting the method body to
execute based on the receiver of a method call. In principle, dynamic dispatch is the
only control construct that we need in an object-oriented language, but expressing
all branches in control flow (what code is excuted next) using dynamic dispatch is
awkward and inconvenient.

In functional languages like Scheme and procedural languages like C, we express
conditional code execution is expressed by an if construct that incorporates least
embedded code fragments: a boolean test expression and two alternate code blocks.4.

In Java, the syntax for an if statement is:

if test
consequent code block
else
alternative code block

In many cases, the code blocks are compound statments enclosed in braces.
In Java code that does not mutate variables each code block ends with a return

statement.5

Let’s return to defining the findAddress method to show how if statements can
be used.

4The Schene cond construct takes additional boolean expressions and additional alternative code
blocks, but it can be expanded into a sequence of if constructs

5Or a throw statement that raises an error condition. We discuss throw statments in Section
1.10.5.
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Instance Methods with If Statements

To define the findAddress method for the DeptDirectory type, we must insert the
following member somewhere in the class DeptDirectory

/** findAddress(s) returns the address of the person with name s or null if
* no matching entry is found */

abstract String findAddress(String name);

The abstract modifier in the definition indicates that the definition only describes the
input and output types for the method, not how it is implemented. Each concrete class
extending DeptDirectory must provide a definition for findAddress that includes a
code body describing how it is implemented.

The ordering of members within a class typically does not affect program behavior.
Nevertheless, it is good programming practice to list class members in a consistent
order. We recommend listing members in the following order: fields, constructors,
methods. According to this convention, the abstract method findAddress should
be the last member in the DeptDirectory class.

Second, we must provide a concrete definition of the findAddress method in
each concrete subclass of DeptDirectory, namely Empty and Cons. Note that the
composite pattern guarantees that a program includes code specifically to process
each data variant. Moreover, in any variant containing a field f of parent type, the
method typically invokes itself recursively on f. This approach to defining methods
is the direct analog of natural recursion template for defining functions in Scheme.
It is so common and so important that OOP community has labeled this recursive
approach to defining methods on composite classes as a separate pattern, called the
interpreter pattern, enriching the composite pattern.

Let us return to process of coding the findAddress method. By definition, there
is no Entry in an Empty directory matching the name passed as an argument to
findAddress. Hence, findAddress must return a value signaling failure. In Java,
the most convenient choice for such a value is null, the reference to no object. All
object values in Java are actually references, so the same object can simultaneously
appear as the value of many different variables. Scheme follows exactly the same
convention regarding structures. Java also provides the special value null, which is
the reference to no object. The closest analog to null in Scheme is the special value
(void). Java null should only be used to represent a special failure value. It should
never be used to represent one of the alternatives in a data definition, e.g., the empty
DeptDirectory. The reason for this prohibition is simple: null is not an object. Any
attempt to invoke a method on null will generate a run-time error aborting program
execution.

The following code is an appropriate definition of the findAddress method in the
Empty class.
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String findAddress(String name) { return null; }

The definition of findAddress for Cons objects is the only interesting chunk of
code in this entire example. Since a Cons object always contains an Entry first and
a DeptDirectory rest, the findAddress method must check to see if the passed
name matches the name field of first and, depending on the outcome, either return
the value of the address or recur on rest.

The object-oriented method has exactly the same recursive structure as the corre-
sponding function definition.

The method can simply be coded as follows:

String findAddress(String name) {
if (name.equals(first.name())) return first.address();
else return rest.findAddress(name);

}

Every class contains the instance method equals which takes a single argument
of type Object./footnote The Object class at the top of the class hierarchy provides
a default definition this method. In DrJava, this default definition is automatically
overridden in class definitions defined in either the Elementary or Intermediate level
programs so that the Java equals method behaves exactly like the Scheme equal?

function. We discuss this default definition in detail in Section 1.13.1. For a String

object name, the equals method returns true if and only if the argument object
contains exactly the same sequence of characters as name.

In the code above, the expression

name.equals(first.name())

invokes the equals method of object in field name on the argument

first.name().

The expression c

first.name()

invokes the name method of the Entry object in the field first to get its name field.
Similarly, the expression

first.address()

invokes thSe address method of the Entry object in field first to get its address

field; the expression

rest.findAddress(name)

invokes the findAddress method of the DeptDirectory object in the rest field on
the object name.



CHAPTER 1. FROM SCHEME TO JAVA 41

Finger Exercises.

1. Enter the text for the DeptDirectory example in the DrJava Definitions pane.
Create a test class DeptDirectoryTest for your program to make sure that
your coding of DeptDirectory is correct. Save your DeptDirectory program
and your test class DeptDirectoryTest in file named DeptDirectory.dj0 and
DeptDirectoryTest.dj0, respectively. �

2. Add a method findPhone analogous to findOffice to the DeptDirectoryClass
class and add new tests to DeptDirectoryTest to ensure that findPhone has
been correctly coded. Remember to use the same design recipe that you learned
in the context of Scheme. Save your program class and your test class in the
files DeptDirectory.dj0 and DeptDirectoryTest.dj0, respectively. �

1.4.5 Conditional Statements

In the definition of the findAddress method, we used an conditional statement of
the form:

if (test) then consequent else alternative

where test is an expression of boolean type and consequent and alternative are state-
ments. Conditional statements are used to classify program values into disjoint sets
or regions using logical tests that we call claims. In simple example given above, we
distinguished between two claims:

name.equals(first.name)

and

!(name.equals(first.name))

1.4.6 Blocks

In Java, braces are to aggregate sequences of statements into individual statements.
A sequence of statements

{
s1;
s2;
...
sn;

}
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enclosed in braces is called a block. A block is a form of Java statement. The other
forms of statements that we have seen so far are variable definitions, assignment
statements, conditional statements, and method calls.

Suppose that we wanted to print a message every time the findAddress method
failed to match a name in a DeptDirectory. We need to add a statement to the
else clause of our conditional statement in the body of findAddress in class Cons.
We can accomplish this task by surrounding the return statement in the else clause
with braces and inserting our print statement before the return statement as shown
below:

String findAddress(String name) {
if (name.equals(first.name()))

return first.address();
else {

System.out.println(first.name() + " does not match");
return rest.findAddress(name);

}
}

Why not insert the print statement after the return statement instead of before?

1.5 Basic Program Design

In the preceding sections of this monograph, we studied a Java subset suitable for
explicating the basic principles of Java program design. As you recall from your
Scheme background, the process of program design can be broken down into six
steps:

• Data Analysis and Design

• Contract and Header

• Examples

• Template

• Body

• Test

which we collectively call the design recipe. Let us examine each of these six steps in
the context of writing object-oriented programs in Java.
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1.5.1 The Design Recipe

Data Analysis and Design

Our first task in writing a program is to understand and define the data that the
program will process. We must compile an inventory of the various forms of data
that can appear as program inputs and outputs and determine how to represent their
“relevant” properties as Java data objects. In scientific problem solving, this process
is often called “data modeling” or simply “modeling”. For each distinct form of
data, we must define a Java class with fields that represent the relevant properties
of each object of that form. We use the composite pattern to specify which different
forms of data belong to the same more general category of data. In the preceding
section, for example, we grouped the Empty department directory and non-empty
Cons department directories together using the composite pattern to form the more
general category DeptDirectory.

After we have decided on the form of our data model and the principal methods of
each type, we write a skeleton program consisting of all the classes in our model. In
each class, we provide a dummy definition specifying the header, type signature (con-
tract in HTDP terminology), and contract (purpose statement in HTDP terminology)
for each principal method in that class.

Class definitions in the “full” Java language are more general and flexible than
Scheme struct definitions because they enable the programmer to determine (i)
exactly which primitive operations, including constructors, the new form of data will
support, (ii) how objects will be printed as strings, (iii) and the types of object fields
and methods. In Scheme, the set of operations generated by a struct definition is
rigidly determined and Scheme does not include any provision for specifying the types
of struct fields and operations. The Elementary and Intermediate language levels in
DrJava imitate Scheme by automatically generating constructors and accessors and
appropriately overriding the toString and equals methods.

The extra generality provided by “full” Java comes at a price. In the absence of
the Elementary and Intermediate language levels, a Java programmer must write far
more text to define a class than a Scheme programmer does to define a comparable
struct. Of course, some of the classes in a Java data definition, e.g., the abstract
class at the top of a composite class hierarchy, have no analog in Scheme, forcing the
Scheme programmer to write explanatory comments instead.

It is a good idea to define a collection of examples for each concrete class in a
data definition. These examples are best defined in an accompanying test class as
explained in Section 1.1.4.
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Contract and Header

Since Scheme does not accept type declarations for function parameters, a well-written
Scheme program must include a header for each function containing this information.
In contrast, Java requires type declarations for all method parameters. Hence, every
syntactically correct Java program includes headers for all methods. Half of this
programming step is mandated by the Java language!

On the other hand, Java does not mandate the inclusion of a contract stating (i)
what if any additional preconditions (beyond the the types of the arguments) must
hold for the method to be called, and (ii) what relationship exists between the inputs
and output of a method. The latter is often called a postcondition or output condition
for the method. Well-written Java programs include preconditions and postconditions
for all methods other than the trivial methods forming the data definition, e.g. stock
constructors and accessors.

For methods defined over composite types (abstract classes at the top of composite
class hierarchies), the contract information should be attached to the abstract method
definition in the top class.

Examples

Each class should include a collection of sample inputs and corresponding outputs
for each method. If the body of a method contains more than one control path
(e.g. a conditional statement), the collection of examples should include at least one
example for each control path. The examples for each method should be included in
an accompanying test class written using a standard testing framework such as JUnit.

Template

In Java, much of the template selection process is mandated by the object-oriented
programming model. When a data type T consisting of several different forms of data
is represented by a composite class hierarchy, each method m defined on T must be
defined in the class T corresponding to T. With a few rare exceptions, the method
definition for m in T must be abstract, forcing each concrete subclass of T to provide
a definition for m. This decomposition corresponds to the cond template used to
process (non-recursive) mixed data in Scheme. Moreover, the relevant data for each
definition of m is simply the set of object fields in the class containing m!

The only features in the template for a Java method definition that are not dic-
tated by the object-oriented programming model are the recursive method calls cor-
responding to circular references in the data definition. For any method m in a class
C containing a object field f of type T where T is a supertype of C (e.g. C is a
concrete class in a composite class hierarchy with T at the top), the body of m will
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usually invoke m recursively on each such field f . These recursive calls appear in the
template. For a concrete example, see Section 1.5.2.

Body

The coding part of the design process consists of filling in the body of each method m
in each concrete class C using the available object fields and the results of recursive
calls from the template. In some cases, writing this code requires ingenuity. But
in the vast majority of cases, the coding process is very easy given decomposition
provided by the template.

Test

Each class C representing a data type definition6 should be tested by evaluating each
primitive operation for the data type on the sample data values defined for its input
domain and other representative input values. This process is described in detail in
Section 1.1.4. In the interim, you can perform this testing in the Interactions pane
and archive your interactions history to save your tests.

1.5.2 An Extended Example: Lists

Let us study how the design recipe described above applies to the process of writing
some simple programs involving lists of integers. Lists are ubiquitous in programming.
The DeptDirectory type introduced in Section 1.4 is simply a specialized form of
list. For reasons that will become clear later in the monograph, we will use the name
IntList rather than List for our list type. As you should recall from your Scheme
background, a IntList is either:

• an Empty list, or

• a composite list Cons(e,l) where e is the first Object of the IntList, and
l is the rest of the IntList.

Compare this definition with the definition of DeptDirectory given earlier.
We can abbreviate the preceding definition using the following mathematical no-

tation:

IntList := Empty + Cons

which states that the set IntList is the union of the sets Empty and Cons. The set
Empty contains only empty objects objects created by new Empty() operations while

6For a composite class hierarchy, use the top class.
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the set Cons contains all objects Cons(o,l) where o is any int and l is any element
of type IntList.

Assume that we are given the task of writing a program to perform some standard
operations on lists of integers such as computing the sum of the numbers in a list,
computing the product of the numbers in a list, and sorting the members of a list
into ascending order.

The following collection of Java classes provides a minimalist definition for the
IntList type:

/** Composite Data Definition:
* IntList := Empty + Cons
*/
abstract class IntList { }

class Empty extends IntList { }

class Cons extends IntList {

/* fields */
int first;
IntList rest;

}

These three classes form a conventional composite class hierarchy with IntList at
the top.

Finger Exercise: Copy the code given above for IntList and save it in a file
called IntList.dj0. Experiment with creating some IntLists and applying the
accessors first() and rest to Cons lists. Note that variables have to be declared to
type Cons rather than Empty if you want to apply the accessor operations to them.
�

Let us compare the IntList defined above with the built-in lists of Scheme.
Scheme provides the primitive operations empty, cons, first, and rest which cor-
respond to the Java operations new Empty(), new Cons(...), first, and rest.
The DrJava Elementary and Intermediate language levels automatically generate the
primitive operations for IntList from the class definitions defining the IntList data
type. For inductively defined types that are not built-in to Scheme, we can write
(define-struct ...) statements, which direct Scheme to automatically generate
the appropriate operations.

Scheme also provides recognizers for empty and compound lists called empty?

and cons? which have no visible analog in the preceding Java program. We could
try to define analogous operations in our Java data definition by including abstract
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boolean operations isEmpty and isCons in the abstract class IntList and define them
appropriately in the concrete subclasses Empty and Cons. But this approach does not
achieve our objective of defining operations equivalent to the Scheme recognizers,
because the isEmpty and isCons methods are applicable only to objects of type
IntList. In Section 1.6.3, we will discuss how operations equivalent to empty? and
cons? can be expressed in Java, but these operations are seldom used in well-written
Java code.

Scheme and DrJava appear very similar with regard to their support for inductive
data definitions, but there are a few important differences. Most notably, the data
constructors generated by Scheme do not restrict the types of their arguments; any
value whatsover can be passed as the component of a constructed object. In inductive
data definitions, we usually restrict the arguments of a contructor to a particular form.
But Scheme does not provide any way to capture this information in define-struct

statements. In contrast, Java requires type declarations for every field of an object
and the Java compiler enforces the correct use of types.

We also re-iterate another important difference between Scheme and Java data
definitions outside the scope of the DrJava Elementary and Intermediate languages.
Java does not automatically generate any accessors, an overriding of the equals

method, an overriding of the toString method, or any data constructors other than
a degenerate 0-ary constructor if no other constructors are provided. The programmer
is responsible for explicitly coding these operations, which provides added flexibilty
at the cost of writing lots of boring code.

1.6 Static Fields and the Singleton Pattern

1.6.1 Static Fields

In addition to (instance) fields, a Java class can include static fields that are attached
to the class rather than instances of the class. The static fields of a class are not
included in the template used to create class instances. There is only one copy of
a static field for an entire class—regardless of how many instances of the class are
created (possibly none).

Since a static field f is attached to a class C rather than an instance o of C, it is
usually referenced in program text by the expression:

C.f

instead of

o.f

but Java supports both forms of notation for static field references.
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The primary use of static fields is to define constants relevant to a particular class.
For example, the minimum and maximum values for each of the primitive numeric
types are attached to the corresponding wrapper classes as the values of the static
fields MIN VALUE and MAX VALUE. A program should always refer to these numeric
values using the names of the appropriate static fields rather than raw numeric
constants. For example, the maximum int value should be denoted by the field
reference Integer.MIN VALUE rather than -2147483648. Every wrapper class except
Boolean includes the fields MIN VALUE and MAX VALUE bound to the minimum and
maximum values for the type, respectively. For more information on the static fields
included in the primitive wrapper classes, read the web page on-line documentation
from Sun Microsystems and follow the links for each of the wrapper classes.

Finger Exercise: In DrJava set the language level to Intermediate and try typing
the following expressions in the Interactions pane:

Integer.MIN_VALUE
Character.MAX_VALUE
Long.MAX_VALUE

�

1.6.2 Singleton Pattern

One of the most important uses of static fields is storing the canonical instance of a
class that only needs a single instance. For example, the Empty subclass of IntList
only needs one instance because the class has no (dynamic) fields.

class Empty extends IntList {
...
static final Empty ONLY = new Empty();

}

Instead of repeatedly allocating new instances of Empty, program text can simply
refer to the canonical instance Empty.ONLY. This code pattern is called the singleton
pattern because it constructs a single instance of the class.

The implementation of the singleton pattern shown above suffers from an an-
noying defect: the class definition for Empty does not prevent code in another class
from creating additional instances of the Empty class. We can solve this problem by
explicitly declaring the consructor for the Empty class making it private.

class Empty extends IntList {
...
private Empty() {}
static Empty ONLY = new Empty();

}
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Then code outside of class Empty cannot perform the operation

new Empty();

A private member of a class C is only visible inside class C. We will discuss visibility
modifiers in more detail in Section 1.13.2.

Finger Exercise: In DrJava, select the Intermedidate language level on the Lan-
guage Level menu. Open your save file IntList.dj0 in the Definitions pane. Modify
the Empty class to use the singleton pattern and save your revised program in the
file IntList.dj1. (You will have to change the extension in the popup window
for the save command.) Open your test class DeptDirectoryTest saved in the file
DeptDirectoryTest class and replace all occurrences of new Empty() by Empty.ONLY.
Run the tests to ensure that your refactoring of IntList.java to use the singleton
pattern is correct. �

A Sample Program

We are now ready to define a simple program to sum the integers in a lists. We will
write test cases (examples for the method) and add a definition of the method

int sum();

to each class in our composite class hierarchy for IntList.
Let’s begin by writing the contract and header for sum in the abstract class

IntList:

// IntList := Empty() + Cons(Object, IntList)

abstract class IntList {
/** returns the sum of the numbers in this. */
abstract int sum();

}

At this point, we could also insert dummy definitions of the sum method in the classes
Empty and Cons. A good convention to follow is the return a simple “default” value
of the return type, such as 0 for primitive numeric types, false for the boolean type,
and a trivial object (of the specified type) for an object type.

Next we need to generate examples showing the expected behavior of the method.
To accomplish this task, we create the following test class:

import junit.framework.TestCase;

/** The JUnit test case class for IntList. */
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public class IntListTest extends TestCase {

static oneElt = new Cons(1, Empty.ONLY);
static twoElts = new Cons(5, oneElt);
static threeElts = new Cons(-10, twoElts);

/** Tests the sum method on some simple IntLists. */
public void testSum() {

assertEquals("empty list", 0, Empty.ONLY.sum());
assertEquals("(1)", 1, oneElt.sum());
assertEquals("(5 1)", 6, twoElts.sum());
assertEquals("(-10 5 1)", -4, threeElts.sum());

}
}

If you provided dummy definitions for sum in each of the subclasses of IntList, then
you can run the test at this point and confirm that they fail.

As the next step, we select and instantiate a template for writing the sum method:

class Empty {
...
int sum() { ... }

}

class Cons extends IntList {

int first;
IntList rest;
...
int sum() { ... first ... rest ... rest.sum() ... ; }

}

which, in this case, is structural recursion on the inductively defined (composite) type
IntList

Finally, we complete the coding process by filling in the bodies of the methods in
the template:

// IntList := Empty() + Cons(Object, IntList)

abstract class IntList {
/** returns the sum of the numbers in this. */
abstract int sum();

}
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class Empty {
int sum() { return 0; }

}

class Cons extends IntList {

int first;
IntList rest;
int sum() { return first + rest.sum(); }

}

To finish the design recipe, we run the tests in the IntListTest class using the
JUnit test runner provided by DrJava.

Finger Exercises

1. In DrJava (at Intermediate Language Level), create the classes IntList and
IntListTest described above and ensure that the tests work. Save your classes
in the files in IntListTest.dj1 and IntListTest.dj1, respectively. �

2. Using the same design recipe, add a definition for the method prod that com-
putes the product of a list of numbers, and test it. Note that all you have do
is develop the method prod (including an appropriate contract [purpose state-
ment in HTDP terminology]) and write and run tests for it. �

1.6.3 Type Predicates and Type Casts in Java

Most programming languages do not have an analog of Scheme predicates like empty?
because they do not have a universal type that contains all other types. Java is almost
identical to Scheme in this regard. All object types are subtypes of the universal type
Object. If we ignore the eight primitive types (which all have corresponding wrapper
types in the Object type hierarchy), then the data models of Scheme and Java are
essentially identical.

To test membership in any object type, Java provides a collection of postfix op-
erators of the form

instanceof T

where T is any defined object type. Hence, given the preceding program defining type
IntList, Java interprets the program expressions below as follows:
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new Empty() instanceof Empty ⇒ true
new Cons(0, new Empty()) instanceof Empty ⇒ false
"A" instanceof Empty ⇒ false

The instanceof operator has the same precedence as the relational operators. (Al-
though the second “argument” to instanceof must be a type name, the Java parser
initially recognizes this argument as an expression.)

Finger exercise: Load your program saved in the file IntList.dj1 into the
DrJava Definitions pane. Add definitions for the methods boolean isEmpty() and
boolean isCons() to class IntList without using the instanceof operator. In the
Interactions pane try evaluating the following sequence of interactive computations:

IntList empty = EmptyIntList.ONLY;
empty
ConsIntList oneElt = new ConsIntList(1, empty);
oneElt
empty.isEmpty()
empty instanceof EmptyIntList
empty.isCons()
empty instanceof ConsIntList
oneElt.first()
oneElt.isEmpty()
oneElt instanceof EmptyIntList
oneElt.isCons()
oneElt instanceof ConsIntList
ConsIntList twoElts = new ConsIntList(0, oneElt);
twoElts.first()
twoElts.rest()
twoElts.rest().isCons()
twoElts.rest() instanceof ConsIntList
empty.first()
empty.rest()
"A".isEmpty()
"A" intanceof EmptyIntList
"A".isCons()
"A" intanceof ConsIntList

To accomodate static type checking, Java includes a second form of type predicate
not present in Scheme called a cast. You may recall that Java includes operations
for casting one primitive type to another. These primitive type casts convert values
of one type to “corresponding” values of another type. The casting operations for
object types have a completely different meaning; casting a value v to an object type
T peforms an instanceof check on v! If the check returns false, then Java throws a
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ClassCastException indicating that the cast failed. If this exception is not caught
(see Section 1.12.3), Java aborts execution and prints an error message indicating
which cast failed. In contrast, primitive type casts never fail!

If object type casts can only cause a program to abort execution, what good are
they? Since the cast prevents execution from continuing if the instanceof test fails,
the compiler knows that the result of object casting expression

( T) e

has type T . Consequently, the static type checker in the compiler assigns the static
type T to this casting expression. By inserting object casting operations in a pro-
gram, you can tell the static type checker that a particular expression has a narrower
(more precise) type that the type that would otherwise be assigned by the static type
checking rules.

Finger exercise: Load your saved file IntList.dj1 into the DrJava Definitions
pane. In the Interactions pane try evaluating the following sequence of interactive
computations:

IntList empty = EmptyIntList.ONLY;
IntList oneElt = new ConsIntList("B", empty);
oneElt
oneElt.first()
((ConsIntList) oneElt).first()
oneElt.rest()
((ConsIntList) oneElt).rest()

Perform the equivalent sequence of membership tests as in the previous exercise using
instanceof operators instead of the operations isEmpty and isCons.

Casting and instanceof Tests

Unfortunately, the Java type checker does not recognize the fact that uses of a variable
v in the control flow path following the test v instanceof T must have type T. The
type checker assumes all uses of a variable v have the declared type of v which is
correct but excessively conservative.

1.6.4 Inheritance and the Composite Pattern

Up to this point, we have used methods in Java essentially like functions in Scheme.
What makes object-oriented programming truly powerful is the ability to add new
forms of data to our program without modifying any old code. For example, if we later
decide to insert links to other directories as an additional form of DeptDirectory data,
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we can simply define a new subclass Link of DeptDirectory with a subDir field re-
ferring to the embedded directory (which can be searched using the findAddress

method. The new class must define findAddress and findPhone for the new form
of data that it introduces, but none of the existing classes requires any change what-
soever.

In defining a program extension, the added data does not have to be a new sub-
class of an abstract class like DeptDirectory. The new data can be a subclass of an
existing concrete class. For example, we could extend our directory program by defin-
ing a class EntryWithPosition extending Entry with a String field title specify-
ing the person’s title ("Graduate student", "Instructor", "Professor", "Chair",
etc.). No revision of the Entry class would be required. Unfortunately, to extract
this information from an Entry using the programming techniques discussed so far,
we would have to add a new method findTitle to the composite class hierarchy
DeptDirectory—modifying existing code. We will introduce a design pattern, called
the visitor pattern near the end of this chapter that eliminates this problem.

When a class C extends another class D, every instance (non-static) member m
of D is automatically an instance member of C with one exception: if C redefines the
method m7 We say that the instance members of class D are inherited by the subclass
C. The linguistic convention of automatically incorporating member definitions of
a class in each of its subclasses is called inheritance. If an inherited method m is
redefined in class C, we say that the new definition overrides the inherited definition.

Inherited fields cannot be overidden. If a class C defines a field with the same
name as an inherited field, the inherited field is merely “shadowed” exactly as it would
be by a local variable with the same name. The inherited field still exists in each
instance of C and can be accessed by code in the body of C by casting the C object
to its superclass type D before extracting the field.

Let’s consider an example of how field shadowing works. If we define a field named
address in a subclass C of Entry as defined in Section ?? above, the new address

field shadows the inherited one within C. Instances of C contain two address fields,
but only the one local to C is accessible using conventional field reference notation.
The other can be accessed by casting this to type Entry. Field shadowing is bad
programming practice and should be avoided if possible.

We have already made extensive use of a limited form of inheritance in the com-
posite pattern. All of the variant classes of in a composite hierarhcy provide defi-
nitions for the abstract methods inherited from the abstract superclass. Recall the
DeptDirectory and IntList programs. When an abstract method from an abstract
class is overridden in a concrete subclass (e.g. findAddress from DeptDirectory

in the classes Empty and Cons), the “missing” definition inherited from the abstract
class is overridden. This special form of overriding is sometimes called method exten-

7The redefined method must have exactly the same name and input and output types as the
method m that would have been inherited.
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sion because the inherited meaning of the method (nothing) is extended rather than
modified.

In well-written OO code, the overriding of abstract methods is far more common
than the overriding of concrete methods. The latter is a perilous practice because it
may break the contract for the overridden method. Whenever you override a concrete
method, make sure that the new method obeys all of its inherited contracts. Typically
the overriding of a concrete method add new functionality while preserving the old:
it satisfies both a new contract, specific to the class containing the overriding, and all
of the inherited contracts.

When a class C overrides a method m in its superclass D, code in the body of C
can still invoke the overridden method m from D using the special notation

super.m( ... )

The feature can be used to add pre-processing and post-processing code to an in-
herited method m. The overriding definition of m can check or transform its inputs,
invoke super.m on the (possibly transformed) inputs in some cases, and possibly
check or transform the results produced by super.m calls.

It is important to remember that all unqualified member references in inherited
code implicitly refer to the implicit method argument this which is bound to an
instance of the inheriting class! Hence, the meaning of a method call appearing in
inherited code changes if the specified method has been overridden! In practice,
this semantic convention gives the behavior that programmers expect for instances
of subclasses, but it can occasionally produce surprises—particulary if the method
overriding is the result of an accidental rather than an intentional name match.

If you follow the programming guidelines recommended in this monograph you can
generally avoid the pathologies discussed in this subsection. According to our stylistic
rules, field references should never span class boundaries (with the exception of visitor
objects discussed below in Section 1.11). All fields should be private. The DrJava
langauage levels facility automatically makes all fields private. Hence, shadowed
members are only accessed through accessor methods, which makes them accessible
via super calls if accessors with the same names are written for the shadowing fields.
No casts are involved. In general, we strongly recommend that fields not be shadowed.

1.7 Using Classes to Enforce Invariants (Optional)

Some data objects have an associated invariant (boolean condition) which must be
maintained for the object to be well-formed. For example, the elements in a sorted
list must appear in increasing order (non-decreasing if duplicates are allowed). Simi-
larly, the nodes of ordered binary tree must appear in ascending order in an in-order
traversal of the tree. In many cases, a class can ensure that such an invariant always
holds by enforcing a well-chosen interface.
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Consider the example that we already cited: a sorted list. Can we define a class
OrdList similar to IntList class that guarantees that all instances are sorted? The
answer is yes, but we have to change the visible interface (members) supported by the
IntList class. In particular, we cannot allow clients of the OrdList class to perform
new operations on OrdList. To add an element to an OrdList, clients must use a
method

OrdList insert(int f)

that inserts f in proper position in this.
The Ordlist class includes a binary constructor just like IntList except for the

fact that it is private, implying that no code outside of class Cons can use it. This
visibility restriction raises a minor problem: how can we write the insert method
for the Empty subclass? The binary Cons constructor is not accessible! The answer
is to define a second constructor for the Cons class that takes a single int argument
and initializes the rest field to Empty.ONLY.

Finger Exercise Write a definition for the OrdList composite class hierarchy as
described above. Test your code. �

Exercise Load the sample program IntList into the Definitions pane. Define
a subclass OrdCons extending Cons that guarantees that first precedes rest.first
(assuming it exists). The rest field of a OrdCons node must be either Empty or
OrdCons. Define a sort method for the class IntList that sorts a list converting all
Cons nodes to OrdCons nodes. Test your code.

1.8 Interfaces

We have not yet discussed one of most important object-oriented features of Java,
namely the notion of an interface. In essence, an interface is a special lightweight
form of abstract class. We use the term lightweight to describe an abstract class
with no fields and no concrete methods; the only members are abstract methods.
The key difference between an interface and the corresponding abstract class is that
a class or interface can have unlimited number of immediate superinterfaces but it
can only have one superclass.

An interface definition has almost the same syntax as a class definition:

interface name {

... member declarations ...
}
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The only significant difference is the keyword interface instead of class.
Some Java software developers follow the convention that interface names begin

with “I” followed by a capitalized name. Hence, “IList” is the name of an interface,
while “List” is the name of a class. There is no generally accepted convention for
distinguishing interface names from class names in the Java programming culture. In
the Java libraries, for example, there is no way to tell a class from an interface based
on its name.

Since most uses of a type defined by a third party (e.g., any program library) do
not depend on whether the type is a class or an interface, the ”I” naming convention
strikes us an inappropriate. The distinction between an interface and an abstract
class is unimportant except when defining a new class that inherits from the interface
or abstract class.

A class extends exactly one superclass, but it can ”implement” (inherit from) an
arbitrary number of interfaces. A class definition can optionally include an implements

clause immediately following the extends clause (assuming one is present) in the class
header. Sample programs using interfaces appear in 1.9.

The Elementary language level of DrJava does not include interfaces. Programs in-
volving interfaces must be written at the Intermediate, Advanced of Full Java language
levels.

1.8.1 Multiple Inheritance

Some object-oriented programming languages like C++ permit a class to have mul-
tiple superclasses. This form of inheritance, which is called multiple inheritance, is
very controversial. While clever uses of multiple inheritance abound, the semantics of
code and field inheritance with multiple superclasses is problematic because of name
clashes between members and, worse, the possibility of inheriting the same class in
more than one way. Recent programming language research suggests that there are
better approaches to inheritance, such as traits and mixins, that combine the flexi-
bility of multiple inheritance with the simplicity of single inheritance, but they are
currently the subject ongoing research and experimentation.

Java supports multiple interface inheritance, which avoids the pathologies of gen-
eral multiple inheritance. In multiple interface inheritance, a class can extend multiple
lightweight abstract classes, but only one class that includes method code and fields.
Since no method code or fields appears in the lightweight abstract classes, there is
no problem with name clashes (since all interface methods are publicly visible) or
inheriting the same interface in multiple ways. We will illustrate the utility of Java
interfaces in the next section. At this point, all we can say is that the abstract classes
DeptDirectory and IntList could be declared as interfaces instead if we were willing
to make all of their methods public and delete the test method from IntList.

Since the abstract class DeptDirectory above does not contain any members, it



CHAPTER 1. FROM SCHEME TO JAVA 58

could be trivially rewritten as follows:

interface DeptDirectory {}

This change forces a small change in the definition of any immediate subclass
of DeptDirectory: the word implements must be used in the header instead of
extends:

class Empty implements DeptDirectory ...

class Cons implements DeptDirectory ...

In short, a class implements an interface but extends a class.
Note that using an interface instead of a class at the root of a union or composite

hierarchy has a price. Members that are repeated in all variants cannot be hoisted
into an interface which cannot contain any dynamic fields or concrete methods. On
the other hand, a variant of DeptDirectory can inherit fields and methods from
another class if DeptDirectory is an interface. We generally recommend using
abstract classes as the root classes in composite hierarchies because they frequently
need to include concrete methods (hoisted code) and occasionally need to include
fields (hoisted fields). On the other hand, some programs involve multiple composite
class hierarchies that share concrete subclasses. In this case, you must define the root
classes as interfaces or define two copies of the “shared” classes.

1.8.2 Implicit Polymorphism

A cardinal rule in Scheme programming is “never repeat code”. If a program re-
peats essentially the same code in two or more places, then the programmer failed to
identify a common abstraction that should only be written once. The repeated code
sections can be replaced by calls on a procedure that defines the repeated operation.
Any minor differences between the repeating code sections can be accommodated by
passing appropriate arguments that “fill in” the differing expressions.

The same rule applies to Java, but the notational details are more cumbersome
because (i) methods cannot be directly passed as arguments in Java and and (ii)
Java is statically typed. Passing methods as arguments is such an important pro-
gramming technique that object-oriented programmers have developed two design
patterns, called the command and strategy patterns, respectivelyy, that enable Java
programs to indirectly pass methods as parameters by embedding them in “dummy”
objects called commands, strategies or policies. These two patterns is discussed in
the next subsection. The complicating effects of Java’s static type discipline are
illustrated by the following example.

Consider a program that manipulates lists of several different types of elements.
One approach is to define a separate composite class hierarchy for each kind of list.
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But this approach requires replicating essentially the same code in the definition of
each class. To avoid this code replication, we can define a single composite class
hierarchy for lists of type Object. Since all Java object types are subtypes of Object,
such a list type can be used in place of any specific list type. However, when we
extract an element from such a list, we will generally have to cast it to the specific
type required by the context in which it is used. These casting operations clutter the
code and reduce the precision of static type checking. Nevertheless, the advantages
conferred by avoiding code replication usually outweigh these disadvantages.

We can define the types in polymorphic lists more precisely and avoid the use of
ugly casts by using generic (parameterized) types in our type signatures. Generic
types look almost exactly like the informal paramterized types such as (listOf T)

that we introduced in the context of Scheme. We defer discussing generics until
Section ??. The DrJava language levels facility does not support generics.

Finger Exercise Load the your IntList.dj1 program into the DrJava Definitions
pane. Remove the insert and sort methods. Convert your class definition of a class
ObjectList where the list elements have type Object instead of type int. Test this
program and save it in a file ObjectList.dj1 for future use. �
Finger Exercise Load the program in your saved file ObjectList.dj1 into the

Definitions pane. Define the methods

ObjectList concat(ObjectList other);
ObjectList reverse();

that concatenate and reverse lists, respectively, using efficient algorithms. Do not
hesitate to use help methods if necessary.

that sorts a list with elements of type Comparable into non-descending order, akin
to the sort method on IntList that you defined in section 1.7. Your code will need
to use the operation

int compareTo(Object other);

in the Comparable interface to compare elements. If you find the description of this
interface using generics confusing, look on the web for the documentation for the Java
1.4 API. It describes the Comparable without mentioning generics. Write a JUnit test
class for your code. �

1.8.3 Interface Types

An interface identifies a program type independent of any specific class. This mecha-
nism enables Java to express computations in more abstract and flexible terms. Con-
sider the following example. Java includes a built-in interface named Comparable

with the following definition:
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interface Comparable {
int compareTo(Object o);

}

All of the methods in an interface are automatically abstract and public. Let
us define a class ComparableList similar to IntList where list elements have the
type Comparable. An object has type Comparable iff it is an instance of a class
that implements the Comparable interface. Interface implementation is inherited: if
a class C implements an interface I then all subclasses of C implement I also.

In this context, we can define the composite class hierarchy with root ComparableList
as follows:

abstract class ComparableList { }

class EmptyComparableList extends ComparableList {
static EmptyComparableList ONLY = new EmptyComparableList();
private EmptyComparableList() { }

}

class ConsComparableList extends ComparableList {
Comparable first;
ComparableList rest;

}

Now assume that we want to modify the ComparableList class so that it imple-
ments the Comparable interface. The compareTo method in the Comparable interface
has the following contract. Any class C that implements the Comparable interface
must have an associated binary relation that is totally ordered: for every pair of ob-
jects a and b in C, either (i) a is less than b, (ii) a equals b, or (iii) a is greater than
b. For any instance o of the same class as this, compareTo(o) returns (i) a negative
number if this is less than o, (ii) zero if this equals o, and (iii) a positive number
if this is greater than o. If o belongs to a different class than this, compareTo(o)
throws a ClassCastException indicating an erroneous use of the compareTo method.

In the ComparableList class, we can impose a lexicographic total ordering on
lists. This ordering is a generalization of the familiar alphabetic ordering on strings.
In such an ordering, a precedes b iff either

• a is empty and b is not,

• the first element of a precedes the first element of b, or

• the first element of a equals the first element of b and the rest of a precedes
the rest of b.
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Finger Exercise Load your saved file ObjectList.java into the DrJava Defini-
tions pane. Convert it to a definition of the class ComparableList given above and
define the sort and insert methods analogously to way they are defined in IntList.
(Hint: you can simply apply the appropriate textual substitions to IntList to gener-
ate ComparableList. Be careful to use the “whole word” option when you substitute
for int.

Revise your class IntListTest to form an effective test class for ComparableList.
Save both ComparableList and ComparableListTest in files ComparableList.dj1

and ComparableListTest.dj1, respectively. �

Finger Exercise Extend your ComparableList class to implement the Comparable
interface as described above and save the resulting class as ComparableList.dj1.
Augment ComparableListTest.dj1 with appropriate test cases and save it. �

1.9 The Command and Strategy Patterns

In a finger exercise in Section 1.4.4, we extended the DeptDirectory program by writ-
ing a method findPhone(String name) to look up a person’s phone number. We im-
plemented findPhone(String name) in exactly the same way as findAddress(String
name), replicating method code. A better strategy would be to implement a method

Entry findEntry(String name)

that returns the Entry matching a given name, and then to define both findPhone

and findAddress in terms of findEntry.
In this section, we will explore a far more general technique for eliminating code

replication called the command pattern. To accommodate returning different Entry

fields, we will define a method

String findField(Operation f, String name)

that takes an Operation object as an extra argument specifying which field to return.
This approach mimics the familiar “code factoring” process in Scheme: repeated code
patterns are abstracted into functions that take parameters that “customize” the code
appropriately. In many cases, these parameters are functions.

Code factoring involving functions as parameters cannot be directly implemented
in Java because methods are not values that can be passed as arguments. Some
object oriented languages such as SmallTalk and Self classify methods as data values,
permitting code factoring to be implemented directly. Fortunately, it is not difficult
to get around this restriction by explicitly representing methods as objects. All
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we have to do is introduce an appropriate abstract class Operation containing a
single abstract method execute( ... ) and define a separate concrete subclass of
Operation for each method that we want to pass as an argument. Each concrete
subclass defines the abstract method execute appropriately. In the general case,
the Operation subclasses may contain fields that correspond to the free variables
appearing in procedural arguments in Scheme. These free variables must be bound
when the Operation is constructed, exactly as they are in a language supporting
procedures as data values.

In the object-oriented design literature, this technique is called the command
pattern in homage to the dominant role that imperative operations have played in
object-oriented computation. Here we are using this pattern in a purely functional
fashion.

To illustrate the command pattern, let us continue our DeptDirectory example.
If we independently write findPhone and findAddress, they differ only in the field
name used in the return expression.

class Empty extends DeptDirectory {

...

String findAddress(String name) {
return null;

}
String findPhone(String name) {

return null;
}

}

class Cons extends DeptDirectory {

...

String findAddress(String name) {
if (name.equals(first.name))
return first.address();

else return rest.findAddress(name);
}
String findPhone(String name) {

if (name.equals(first.name))
return first.phone();

else return rest.findPhone(name);
}

}
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We can “abstract out” this difference by writing a single findField method em-
bodying the common code in the methods findPhone and findAddress. To accom-
modate differing choices for the returned Entry field, the method takes an Operation

that performs the appropriate field extraction on the Entry. The following code in-
cludes a new mechanism for defining concrete subclasses, called anonymous classes,
that we have not discussed before. We will explain anonymous classes in detail below.
In this example, anonymous classes are used to generate instances of new subclasses
of the interface Operation; the static fields address and phone are bound to objects
of type Operation that define the execute method as the method extracting the
address and phone fields, respectively, of an Entry.

interface Operation {
String execute(Entry e); // implicity public and abstract

}

abstract class DeptDirectory {
...
abstract String findField(Operation c, String name);
String findAddress(String name) {

return findField(opddress, name);
}
String findPhone(String name) {

return findField(opPhone, name);

static Operation opAddress = new Operation() {
// ANONYMOUS class
public String execute(Entry e) { return e.address(); }

}
static Operation opPhone = new Operation() {

// ANONYMOUS class
public String execute(Entry e) { return e.phone(); }

}
}

class Empty extends DeptDirectory {
...
String findField(Operation c, String name) {

return null;
}

}

class Cons extends DeptDirectory {
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...
String findField(Operation c, String name) {

if (name.equals(first.name)) return c.execute(first);
else return rest.findField(c,name);

}
}

Each brace construction

{ // ANON CLASS
public String execute(Entry e) { return e. ...; }

}

following a new Operation() expression above defines a unique instance of a new
anonymous (unnamed) class implementing the interface Operation. In Java, anony-
mous classes are simply an abbreviation mechanism. The Operation class could have
been written without anonymous classes as follows:

interface Operation {
String execute(Entry e);
}

}
class AddressOperation implements Operation {
public String execute(Entry e) {

return e.getOffice();
}

}
class PhoneOperation implements Operation {
public String execute(Entry e) {

return e.phone();
}

}
abstract class DeptDirectory {
...
static Operation opAddress = new AddressOperation();
static Operation opPhone = new PhoneOperation();

}

at the cost of introducing the new class names AddressOperation and PhoneOperation.
In general, a single instance of a new class extending class (implementing interface)

C can be created using the notation:

new C(...) { ... members ...}
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where C(...) specifies what superclass initialization should be performed on the
instance. If C is an interface, then the argument list in C(...) must be empty.
No constructors can appear in the list of members because the class is nameless and
cannot be instantiated again. Any required initialization of fields inside the instance
can be specified directly in the code defining the class.

If we ignore the ugly notation, an anonymous class extending the abstract class
Operation has a direct analog in Scheme that you may have recognized, namely
a lambda-expression. In any situation in Scheme where it is appropriate to use a
lambda-expression, you can use an anonymous class in Java! The failure to make
such an identification is the single most glaring failure of most expositions on Java.
Of course, they are typically written for readers with a background in C/C++ rather
than Scheme or other language that support procedures as general data objects.

If an anonymous class appears inside a dynamic method, it can contain references
to the fields of the enclosing class instance—akin to the free variables that can appear
in Scheme lambda-expressions. The only complication is the treatment of the variable
this. Since an anonymous class defines an instance of a new class, the variable this

inside an anonymous class refers to the new class instance. It does not refer to the
enclosing class instance. To refer to the “entire” enclosing class instance, Java uses
the notation C.this where C is the name of the enclosing class.

Exercises:

1. Add a map method to the IntList class that takes an Operation and applies
it to each element of this to produce a new IntList with exactly the same
number of elements as this.

2. Assume that a vector
< a0, a1, a2, ..., an >

is represented by the list
(a0 a1 a2 ... an).

where the coefficient’s ai are objects of type Double. Add a method

double norm()

to IntList computes the norm by this.v by squaring the elements, adding the
squares together and taking the square-root of the sum. You can compute the
vector of squares using map and the define a method double sum() to compute
the sum.

3. Assume that a polynomial

a0x+ a1x+ a2x
2 + ...+ anx

n
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is represented by the list
(a0 a1 a2 ... an)0

where the coefficient’s ai are objects of type Double. Write a method

double eval(IntList p, Double x)

to evaluate the polynomial at coordinate x. Use Horner’ rule asserting that

a0 + a1x+ a2x
2 + ...+ anx

n = a0 + x · (a1 + x · (a2 + ...x · an))

Remember to use the structural design pattern for processing lists (and by
association polynomials as we have represented them).

1.10 Loose Ends

We have nearly finished covering the core “functional” subset of Java. Only a few
loose ends remain. They include:

• static methods;

• local variables;

• casts and static type checking;

• exceptions;

• name and method overloading; and

• complete Java programs.

We will defer discussing the visitor pattern until we cover these loose ends because
our code examples for the visitor pattern will use some of these language features.

1.10.1 Static Methods

In Section 1.6.1, we briefly discussed static members of classes because static fields
are the only sensible way to define the constants relevant to a given class. Up to now,
we have avoided discussing static methods.

A static method is a method definition preceded by the modifier static. In the
body of a static method, there is no implicit argument this. Static methods belong
to classes rather than objects. In a static methd call, the class name implicitly or
explicitly precedes the method name, just as the receiver the method name in an con-
ventional (dynamic) method call. For example, there is a static method toString(int
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i) in the class Integer that converts an int input i to its standard String repre-
sentation. Hence, given any expression e of type int, Integer.toString(e) is the
corresponding String representation.

There are several important uses of static methods that warrant disucsssion. Since
primitive values are not objects, there is no way in Java to define methods that work
on primitive values in an OO style. The best way to express such methods is to
make them static. Of course, the static modifier can be dropped from any static
method but the resulting dynamic method completely ignores its receiver. Moreover,
a dynamic method that makes no reference to its receiver is less useful than its static
counterpart because it cannot be invoked without a receiver. In contrast, static
methods from a class C can be called even if no objects of type C, e.g., C is abstract
and has no subclasses.

1.10.2 Other Uses of Static Methods

Static methods are necessary in Java for a variety or reasons including:

• defining operations on primitive types (as discussed above);

• defining operations on instances of library classes that cannot be modified or
extended such as String; and

• defining operations on arrays (which we will discuss later).

For example, an operation

public String squeezeWhiteSpace(String s);

that returns a String identical to s with all spaces and tabs removed must be ex-
pressed as a static method because the library String class cannot be modified or
extended.

Finally, all operations on arrays must be expressed in static (procedural) form
because array types do not have conventional class definitions; they are built-in to
the Java virtual machine. We will discuss arrays in Chapter 2 when we address
imperative programming in Java.

In DrJava, static methods are not allowed at the Elementary and Intermediate
language levels.

1.10.3 Casts and Static Type Checking

In Scheme every primitive operation dynamically checks that its arguments have the
appropriate form (type) as it executes. If an operation is applied to data of the wrong
form, Scheme aborts execution and prints an error message, much as Java does when
an exception is thrown and not caught.
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Java also performs some argument checking during program execution (run-time),
but most argument checking is done statically by the compiler before a Java program
executes. A Java compiler enforces a syntactic discipline on program text called static
typing. The compiler uses a collection of type-checking rules to determine whether a
program is well-typed or not. Programs that are not well-typed are rejected with an
explanation of which rules were broken.

The type-checking rules embody simple “common sense” inferences and consis-
tency checks. The rules assign a type to every program expression and subsequently
check that these type assignments are consistent. A Java compiler assigns types to
program expression as follows:

1. every program constant has a type specified by the language definition;

2. every program variable (field, parameter, or local variable) has the type declared
in the program;

3. each method invocation has the declared return type of the method;

4. each application of an arithmetic operator (e.g., +, *) has the return type stip-
ulated by a table in the language definition;8

5. each application of a relational operator and instanceof test has type boolean;

6. each conditional expression

test ? consequent : alternative

has the least (smallest) type among all defined types that includes both the
consequent type and alternative type as subtypes; and

7. the type of any cast expression

T e

is T.

Given these type assignments, a Java compiler checks their consistency by enforc-
ing the following rules:

1. the type of the receiver of a field selection or method invocation includes the
specified field or method in its signature (a list of the member headers for the
class or interface);

8The return types of arithmetic operators generally depend on the types of their arguments. For
some operator applications, the table immediately reports a type error.



CHAPTER 1. FROM SCHEME TO JAVA 69

2. the type assigned to each argument expression in a method invocation is a
subtype of the declared type of the corresponding parameter;

3. the type of the right-hand side of an assignment is a subtype of the type of the
left-hand-side; and

4. the type of each return expression in a method body is a subtype of the declared
return type of the method.

Note that Java type checking rules do not capture the logical consequences of
instanceof tests. As a result, Java program text often must include apparently
redundant casting operations in code following an instanceof test.

This phenomenon is illustrated in the following simple example. Consider the
following method which could be added to the IntList class above.

static Object first(IntList l) {
if (l instanceof Cons) return ((Cons) l).first;
else throw

new ClassCastException("first requires a non-Empty IntList");
}

In the method, all occurrences of the parameter l have the same type, namely IntList

as declared in the method header. The

l instanceof Cons

test has no effect on type-checking. As a result, the occurrence of l preceding the
field extraction operation .first must be explicitly converted to type Cons using the
casting operation (Cons) written as a prefix in front of l. Since the field .first is
not defined in the abstract class IntList, the definition of the method first does
not type check if the casting operation (Cons) is omitted.

Applying a casting operation ( T ) to a Java expression e of some static object
type U has consequences for both program execution and compilation. First, it inserts
a run-time check to confirm that the value of e belongs to the type T as claimed by
the casting operation. Second, it converts the static type of the expression e from U
to T .

1.10.4 Local variables

Method parameters in Java play exactly the same role as function parameters in
Scheme. They are local variables bound to the corresponding argument values. They
are destroyed when the method returns.9 Java also provides a mechanism, akin to

9In Scheme, this statement is false in general; local variables continue to exist as long as a
“closure” referring to them exists.
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Scheme’s local construct, for introducing local variables to perform a subcompu-
tation without invoking a helper method. In Java, local variable definitions can be
inserted as statements in any statement sequence (such as a function body or com-
pound statement). Each such variable is accessible only in program text between its
definition and the end of the statement sequence. We have already used this language
construct without explicitly mentioning it.

For example, consider the problem of adding a method IntList merge(IntLlist

other) to the intList class discussed earlier in the monograph. This method merges
this and other assuming that both are already in (ascending) order. In the following
code fragment, comments have been elided to save space:

abstract class IntList IntList cons(int n) return new ConsIntList(n,
this); abstract IntList merge(IntList other); class EmptyIntList
extends IntList static EmptyIntList ONLY = new EmptyIntList();
private EmptyIntList() IntList merge(IntList other) ... class Con-
sIntList extends IntList int first; IntList rest; Intlist merge(IntList
other) ...

The definition of merge for subclass EmptyIntList is trivial (it merely returns other),
but the definition for ConsIntList requires casting other to type Cons once we have
dealt with the empty case for other:

IntList merge(IntList other) {
if (other.equals(EmptyIntList.ONLY)) return this;
else if (first <= ((ConsIntList) other).first()) return rest.merge(other).cons(first);
else return ((ConsIntList) other).rest().merge(this).cons(((ConsIntList)other).first());

}

We can simplify this method definition by introducing a local variable of type ConsIntList
bound to other:

IntList merge(IntList other) {
if (other.equals(EmptyIntList.ONLY)) return this;
ConsIntList o = (ConsIntList} other;
if (first <= (o.first()) return rest.merge(o).cons(first);
else return o.rest().merge(this).cons(o.first());

}

1.10.5 Exceptions as Errors

Some operations on data are inherently partial. For example, there is no mathemat-
ically sensible definition for the result of integer division by zero. Similarly, there is
no sensible definition for the first element of an empty sequence. Java provides an
elegant mechanism for coping with this problem. Program operations can “throw” a
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“run-time error” condition called an unchecked exception that aborts program execu-
tion and prints a diagnostic error message and a list, called a traceback, of the stack of
pending method calls. For example, attempting to divide any int by 0 generates an
ArithmeticException. Exceptions are ordinary Java data objects descended from
the built-in class called Exception. Unchecked exceptions are descendants of the
class RuntimeException extending Exception.

In Java, any method can “throw” an exception simply by executing the statement

throw e;

where e is any expression that evaluates to an object of type Exception. The classes
Exception and RuntimeException both include a zero-ary constructor and a unary
constructor. The latter takes an error message String as an argument. The string
argument is printed as a diagnostic message if it is provided.

The following Java code implements “functional” lists of objects:

abstract class List {

abstract Object first();
abstract List rest();

abstract String toStringHelp();
// List -> String without enclosing parentheses and leading blanks

}

class Empty extends List {

Object first() {
throw new
ClassCastException("first requires a non-Empty List");

}
List rest() {

throw new
ClassCastException("rest requires a non-Empty List");

}
public String toStringHelp() { return "()"; }
String toStringHelp() { return ""; }

}

class Cons extends List {
Object first;
List rest;

Cons(Object f, List r) {
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first = f;
rest = r;
}

Object first() { return first; }

List rest() { return rest; }

public String toString() { return "(" + first + rest.toStringHelp() + ")"; }
String toStringHelp() { return " " + first + rest.toStringHelp(); }

}

The class ClassCastException is a built-in Java class extending RuntimeException

that other built-in Java classes use to signal improper method applications where
this or some other argument belongs to the wrong class.

Exception objects that do not belong to the type RuntimeException are called
checked exceptions. We will discuss how they are used later in this monograph.

1.10.6 Name and Method Overloading

In Java, the same name can simultaneously be used for a local variable or method
parameter, different fields of the same object, and different methods of the same
object. Java uses context and type information to determine the meaning of a name.
For example, many Java programmers would write the constructor for the class Cons
above as follows:

Cons(Object first, List rest) {
this.first = first;
this.rest = rest;
}

In this example, the names first and rest each have two different meanings. Java
resolves potentially ambiguous uses of names by using the innermost (most local)
definition of the name. Hence, the prefix this. is required to distinguish the first

and rest fields of this from the constructor parameters of the same name.
While the use of the same name for different kinds of program entities is widely

accepted as good programming practice, the use of one name for several different
fields or methods is more controversial. A Java subclass B can introduce a field with
exactly the same name n as a field in its superclass A. The inherited field is not
overridden (what would overriding mean in this context?); it is merely “shadowed”.
When the name n appears in a method of B, its meaning depends on the type of the
receiver. If the receiver is this, then the new field n introduced in B is meant. But if
the receiver has type A rather than B, then the old field n introduced in A is meant.
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Warning: duplicate field names can be the source of insidious program errors that
are very difficult to diagnose. For this reason, we strongly recommend against using
them.

Duplicate method names are less controversial but can still be dangerous. In
a class, Java permits the same method name to be used for different methods as
long as their argument lists do not identical the same length and same types. The
practice of defining more than one method in a class with same name is called method
overloading. Java resolves overloaded method names using the types of the argument
expressions. When the Java compiler encounters a method invocation involving an
overloaded method, it determines the types of the method arguments and uses this
information to select the “best” (most specific) match from among the alternatives.
If no best method exists, the program is ill-formed and will be rejected by the Java
compiler.

We urge restraint in using the same name for different methods involving the same
number of arguments. Since static type information is used to resolve which method
is meant, program errors may be difficult to find because the programmer may not
infer the correct static type when reading the code.

1.10.7 Complete Java Programs

Every complete Java program must contain a root class where execution can begin.
A root class must contain a main method defined with the header

public static void main(String[] args)

The return type of the main method is void, which is a degenerate, empty type. There
are no values of type void. A method with void return type does not return a value.
A method that retursn void usually has some side effect such as printing an answer,
writing a file, or modifying the value of a field of an object. We have scruplulously
avoided programming with side effects up to this point in this monograph and will
not introduce them until Chapter 2.

To execute a Java program, a user must identify the name of the root class for the
program. In most Java computing environments, the command required to execute
the Java program with root class C is simply

java C

Note that a class may contain a main method even if it is not intended to be the root
class of an actual program. Of course, evaluating the DrJava expression

Motto.main(null);
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is equivalent to executing this conssoled. For the sake of programming convenience,
the DrJava Interactions pane accepts the command line syntax as well as the explicit
invocation of the main method shown above.

In batch programming environments that lack an Interactions pane like DrScheme,
it is common practice to use main methods in non-root classes as test methods. Such
test methods can easily be executed from the command line by typing

java C

where C is the class being executed. We do not recommend this practice in DrJava
because DrJava can evaluate any program expression in the Interactions pane, the
testing process is even more convenient. For the moment, we recommend defining a
static method test() in each class that tests all of the methods of the class. Later,
we will revise this recommendation to describe a much more comprehensive testing
strategy.

When execution begins in the main method of a root class, no instances of the
root class exist. In fact, most Java programs never instantiate the root class because
it serves as a framework for organizing program execution rather than a definition
of a new form of data. Java classes really serve two distinct purposes: defining data
objects and organizing static methods and variables.

The args parameter of the main method in the root class is used to pass command
line options to the Java program. We will not use this feature in this monograph.

A Complete Java Program

The following simple program

class Motto {
public static void main(String[] args) {

System.out.println("Java rules!");
}

}

prints the String output

Java rules!

and stops when the Java program with root-class Motto is executed. Before any
Java program can be executed, it must be compiled into a form suitable for machine
execution called a class file Motto.class. The name of the class file generated for a
class C is simply C.class.

In DrJava, the Compile button applies the compiler to each open Java files and
write out the resulting class files to the file system—assuming that the files did not
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contain any syntax errors. Each class file is stored in the same directory as the
corresponding source file.

Finger Exercise: Using DrJava, define the Motto class given above and execute
it as program. �

1.11 The Visitor Pattern

The composite and interpreter patterns enforce an elegant discipline for writing
object-oriented functional programs. But this elegance comes at a price: every time
we need to define a new operation we must modify every class in the composite class
hierarchy to add a new method. As a result, program modification involving new
methods is painful. Moreover, we cannot use these patterns to define new operations
if we do not control the source code for the composite class. Without access to the
source code, the only way we can define new methods is to write them in procedu-
ral style as static methods in another class, losing all the benefits of object-oriented
organization.

In this section, we introduce a design pattern, called the visitor pattern, that com-
pletely and elegantly solves the problem of adding new operations to composite class
hierarchies without modifying the text of either the composite class or its variants.

Before delving into the technical definition of the visitor pattern, we present a
motivating example: an interpreter for arithmetic expressions.

1.11.1 Interpreting Arithmetic Expressions

An ArithExpr is either:

• Const(c)

• Sum(left right),

• Prod(left,right), or

• Neg( left)

where c is an int and left and right are ArithExprs.
As before, to represent this data type in Java, we employ the composite pattern.

We define an abstract class to represent the union of these types, and four concrete
subclasses, one for each of the different variants.
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abstract class ArithExpr { }

class Const extends ArithExpr {
private int value;

}

class Sum extends ArithExpr {
ArithExpr left, right;

}

class Prod extends ArithExpr {
ArithExpr left, right;

}

class Neg extends ArithExpr {
ArithExpr arg;

}

Next we need a way to evaluate our expressions. First, let’s try defining an eval

method that returns a constant for any ArithExpr.
We add the abstract method

abstract Const eval();

to the ArithExpr class. We could easily define eval to return an int, but we’ve
chosen to return a Const instead because it buys us a little flexibility later.

In the Const class, we add a concrete version of the abstract eval method:

Const eval() { return this; }

But now we encounter a minor problem: to evaluate products and sums, we need
to be able to multiply or add two instances of Const. Multiplication and addition are
not defined for instances of Const, but they are defined for the int values embedded
inside instances of Const. Thus, we can use the getter getvalue() to retrieve the
value of a Const. To the class Prod, we add the method

Const eval() {
return new Const((left.eval().getValue()) * (right.eval().getValue()));

}

The eval methods for Sum and Neg are defined similarly.
Let us amplify this example by adding variables as a syntactic category to ArithExpr.

Writing down our revised data type in a shorthand form, we have
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ArithExpr ::= Const(int)
| Sum(ArithExpr, ArithExpr)
| Prod(ArithExpr, ArithExpr)
| Neg(ArithExpr)
| Var(String)

where the variant Var represents variables. The String field in a Var is the variable’s
name.

This notation is merely shorthand for the follow ing prose. An ArithExpr is
either:

• Const(c ),

• Sum(left,right ),

• Prod(left,right) ),

• Neg(left), or

• Var(s)

where c is an int, left and right are ArithExprs, and s is a String.
In order to evaluate expressions including variables, we introduce environments,

which store collections of bindings. A binding is simply a pair containing a variable
name and a value. We will also have to modify eval so that its signature becomes

Const eval(Environment env)

We can implement Environments using functional lists of string-value pairs. The
details of the implementation are left as an exercise. (Hint: look back at the depart-
mental directory example.)

The definition of eval will have to change accordingly for each of the existing con-
crete subclasses, but only the Var subclass will actually make use of the environment
parameter. For example, Sum.eval will become

Const eval(Environment env) {
return new Const(left.eval(env).getValue() + right.eval(env).getValue());

}

The parameter env is not used directly in the eval code for Sums, but it is passed to
the recursive calls to eval in case there is a Var further down in the expression. It
is only in class Var that we need to use the environment parameter to look up the
value of a variable:
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class Var extends ArithExpr {
/* fields */
private String name;

/* constructor */
Var(String n) { name = n; }

/* accessors */
public String name() { return name; }

/* toString */
public String toString() { return name; }

Const eval(Environment env) { return env.lookup(name); }
}

Here env.lookup(name) fetches the Const value associated with name in the environ-
ment env (if there is no entry for name, lookup should raise some kind of exception).

Having to pass the environment as a parameter to all of the eval methods, when
it is directly used in only one of them, is clumsy. As we shall see, there is a different
way to implement expression evaluation that avoids this problem.

1.11.2 Openness in Data Design

Recall our definition for an arithmetic expression without variables:

ArithExpr := Const(int) | Sum(ArithExpr, ArithExpr) ....

Our implementation of this data definition using the composite pattern would
be more robust and more flexible if we could define new operations on ArithExprs
without modifying any existing code. Fortunately, there is a clever design pattern
called the visitor pattern that lets us do this. The idea underlying the visitor pattern is
to bundle the methods defining the new operation for each concrete subclass together
in a new class called a visitor class. An instance of such a class is called a visitor.

First, we will define a new interface Visitor that specifies what methods must
be included in every visitor class for ArithExpr:

interface Visitor {
int forConst(Const c);
int forSum(Sum s);
...

}
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Notice that each method takes an instance of the class that it processes. This argu-
ment, called the host, is needed to give it access to all the information that would be
available through this if the method were defined inside that class, e.g., the values
of the object’s fields returned by accessors.

Now we will create a new concrete class EvalVisitor to hold all the methods for
evaluation of an ArithExpr:

class EvalVisitor implements Visitor {
int forConst(Const c) {

return c.getValue();
}
int forSum(Sum s) {

return s.left().accept(this) + s.right().accept(this);
}
...

}

We need to install a hook in each subclass of ArithExpr to execute the corresponding
visitor method. The hook is a new method, accept, which takes a visitor as an
argument and calls the appropriate method in that visitor.

abstract class ArithExpr {}
abstract int accept(Visitor v);

}

class Const {
...
int accept(Visitor v) {

return v.forConst(this);
}

}

class Sum {
...
int accept(Visitor v) {

return v.forSum(this);
}

...

To evaluate an arithmetic expression, we simply call

a.accept(new EvalVisitor())
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If we wish to add more operations to arithmetic expressions, we can define new visitor
classes to hold the methods, but there is no need to modify the existing subclasses of
ArithExpr.

Notice that, since a visitor has no fields, all instances of a particular visitor class
are identical. So it is wasteful to create new instances of the visitor every time we wish
to pass it to an accept method. We can eliminate this waste by using the singleton
design pattern which places a static field in the visitor class bound to an instance of
that class.

class EvalVisitor {
static ONLY = new EvalVisitor();
...

}

Then, instead of

accept(new EvalVisitor()),

we may simply write

accept(EvalVisitor.ONLY).

Another elegant way to define visitors is to define each visitor as an anonymous
class. Since an anonymous class definition defines only one instance of the new class,
it produces results similar to the singleton pattern. The principal difference is that
the new class has no name; the unique instance must be bound to a local variable or
field declared in the enclosing program text.

Recall that an anonymous class has the following syntax:

new className(arg1, ..., argm) { member1; ...;membern }

In most cases, the class className is either an abstract class or an interface, but
it can be any class. The argument list arg1, ..., argm is used to call the constructor for
the class className; if className is an interface, the argument list must be empty.
The member list member1; ...;membern is a list of the member definitions for the new
class separated by semicolons.

For example, to create an instance of a visitor that evaluates an arithmetic ex-
pression, we write:

new Visitor() {
int forConst(Const c) {...}
int forSum(Sum s) {...}
...

}
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Since we generally want to use a visitor more than once, we usually bind the anony-
mous class instance to a variable, so we can access it again! The statement:

visitor ev = new Visitor() {
int forConst(Const c) {...};
int forSum(Sum s) {...};
...
};

binds the variable ev to our anonymous class instance.

1.11.3 Polymorphic Visitors

In our application of the visitor pattern above, the for methods of the visitor classes
and the accept methods for the ArithExpr classes returned values of type int. This
convention is acceptable as long as all the computations we ever want to perform over
ArithExprs have integer results. But if not, we are forced to declare a new interface
visitor type and new accept methods for each distinct result type. Since the whole
point of the visitor pattern is to avoid having to modify a data type every time we
wish to perform some new computation over it, we have a potential problem.

We can address this problem by redefining the for and accept methods so that
they return a more general type. Before getting into the details, let’s step back and
give visitors a more general definition.

A visitor is an object containing

• a concrete description of an operation on composite data, with a separate
method for processing each alternate form of the data; and

• the argument values required by the operation.

The properties common to all visitors for a particular composite type are collected
in corresponding the visitor interface. Any arguments that are processed by a partic-
ular visitor are typically stored in fields declared in the corresponding visitor subclass
to avoid compromising the generality of the interface. A typical visitor interface has
the form

interface Visitor {
// a "for" method for each concrete
// subclass of the visited class
Object forC1(...);
.
.
.
Object forCn(...);

}
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We use Object as the return type of the for methods so that we can accommodate
concrete visitor classes that produce almost any type of result. This convention
exploits the polymorphism inherent in class inheritance: every object belongs to all of
the types associated with its superclass, super-superclass, etc. Since the class Object
is perched at the root of the class hierarchy, all objects belong to the type Object, and
support the operations defined in class Object. The only types that do not belong
to Object are the primitive types like int. Fortunately, we can get around this by
using the corresponding wrapper classes (e.g. Integer instead of int). In the event
we want a visitor operation to have a void return type, we can either return the null

reference or the only instance of a singleton class VoidType.10

Let us return to our ArithExpr example. We can generalize our visitor class as
follows:

abstract class AE { // AE is short for ArithExpr
abstract Object accept(Visitor v);

}

class Const extends AE {
/* fields */
int value;

/* constructor */
Const(int v) { value = v; }

/* getters */
int getValue() { return value; }

/* toString */
public String toString() {

return Integer.toString(value);
}

Object accept(Visitor v) {
return v.forConst(this);

}
}

. . .

The code for the Sum and Prod ares nearly identical except for the fact that
the accept methods in those classes respectively invoke the forSum and forProd,

10The Java libraries include a Void class, but it cannot be instantiated, so we must define our own
VoidType.
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methods of the Visitor argument v. They all have Object as their return type.

1.11.4 Polymorphic Visitors with Arguments

To make our visitor example more interesting and realistic, let us include variables in
the type ArithExpr.

class Var extends ArithExpr {
String name;
Var(String n) {

name = n;
}
public String toString() {

return name;
}
Object accept(Visitor v) {

return v.forVar(this);
}

}

Then the visitor interface for ArithExprs has the form:

interface Visitor {
Object forConst(Const c);
Object forSum(Sum c);
Object forProd(Prod p);
Object forVar(Var v);

}

The concrete visitor class that implements expression evaluation is:

class EvalVisitor implements Visitor {
Env env; // an environment for looking up variables
EvalVisitor(Env e) { env = e; }
Object forConst(Const c) { return c; }
Object forSum(Sum s) {

return new Const( ((Const)s.left.accept(this)).value +
((Const)s.right.accept(this)).value );

}
Object forProd(Prod p) {

return new Const( ((Const)p.left.accept(this)).value) *
((Const)p.right.accept(this)).value));

}
Object forVar(Var v) { return env.lookup(v.name); }

}
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The environment env, which was an explicit parameter of the eval method in our
method-based implementation for evaluation, is now a field of the visitor. As before,
it is directly used only for evaluating instances of Var, but now we don’t need to
explicitly pass the environment through method argument lists.

Since we are programming in a functional style, the forConst method need only
return its argument as the result, rather than allocating a copy. The forSum and
forProd methods are mostly straightforward, evaluating the subexpressions first and
combining the results. The only subtlety is that since accept now returns an instance
of Object rather than an int, we need to perform an explicit type cast to get the
values for the left and right subexpressions. For example, to obtain the value for the
left subexpression in a Sum, we have

((Const)s.left.accept(this)).value

The expression

s.left.accept(this)

computes a Const whose value field is the value of the expression s.left. But the
declared return type for accept is Object, and since an Object has no field named
value, we cannot extract the value directly. Since we know that the Object is in fact
a Const, we can insert an explicit type cast to Const, and then extract the value.

The forVar method looks up the value of the variable in the current environment.
The environment is passed in when an EvalVisitor is created, and is presumably
given bindings for the existing variables beforehand.

Finger Exercise Finish the visitor-based implementation of expression evalua-
tion, including the definition of the Environment class, by yourself. Can you think of
other operations on expressions that the visitor pattern might help you implement?
�

1.12 Exceptions and Runtime Errors

In this section, we study Java exceptions, a language construct to process unusual
situations and run-time errors. In the process, we will identify the problems associated
with using checked exceptions.

Many production programs have to detect erroneous input, report it to the user,
and in some cases recover to handle more input. Since handling erroneous input
deviates from the expected flow of program control, Java provides a mechanism called
exception handling that is tailored for this purpose. To be more specific, let us
consider an example based on the arithmetic expression evaluator from the previous
section.
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1.12.1 A Motivating Example

Recall the visitor class for evaluating arithmetic expressions with variables:

class evalVisitor implements Visitor {
Env e;
Object forConst(Const c) {return c; }
Object forSum(Sum s) {

Const l = (Const)(s.left.accept(this));
Const r = (Const)(s.right.accept(this));
return new Const(l.value + r.value);

}
Object forVar(Var v) { return env.lookup(v.name); }

}

The casting operations (Const) ... in the body of the forSum method are
required by the Java type checker. The Java type system is too imprecise to determine
that the recursive invocations of the visitor in forSum will never return any value
other than a Const. The Java type system simply uses the declared return type for
a method as the type of invocation of that method.

You might wonder why the designers of Java adopted such a simple, imprecise
type system. Precise type systems have two crippling disadvantages. First, they
perform a complex inference process that is difficult to understand. If a programmer
makes a type error, it is difficult to determine what program revisions are required
to satisfy the type checker. Second, precise type inference is expensive. The time
complexity of very precise type checking (depending on the specific algorithm) may
grow with the square or cube of program size or worse.

Now let us augment Arithmetic Expressions with a variable binding operator let.
For example, we might want to evaluate the expression:

let x = 17 in x + y

in an environment where y is bound to 10 to produce the value 17. This extension is
reflected in the definition for data type ArithExpr by adding a Let form to the list
of variants:

ArithExpr ::= Const(int)
| Sum(ArithExpr, ArithExpr)
| ...
| Let(Var, ArithExpr, ArithExpr)

Similarly, in the object-oriented implementation of ArithExpr, we must add the vari-
ant class
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class Let extends ArithExpr {
Var bindVar;
ArithExpr bindExpr;
ArithExpr body;
...
Object accept(Visitor v) { v.forLet(this); }

}

To define operations for our generalized Arithmetic Expressions using visitors, we
need to define a new visitor interface with for methods for all of the variants:

interface Visitor {
Object forConst(Const c);
Object forSum(Sum c);
Object forProd(Prod p);
Object forVar(Var v);
Object forLet(Let l);

}

Since the evaluation of a Let form involves extending the environment, let us write
the code for manipulating environments:

class Env {
abstract Const lookup(String name);

}

class Empty extends Env {
Const lookup(String name) {

return null;
}

}
class Cons extends Env {
String firstName;
Const firstVal;
Env rest;

Cons(String name, Const val, Env env) {
firstName = name;
firstVal = val;
rest = env;

}

Const lookup(String name) {
if (name.equals(firstName)) return firstVal;
else return rest.lookup(name);
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}
}

To evaluate generalized Arithmetic Expressions, we must define an appropriate con-
crete class extending Visitor:

class EvalVisitor implements Visitor {
Env env;
Object forConst(Const c) { return c; }
...
Object forLet(Let l) {

Const bv = (Const) l.bindExpr.accept(this);
return l.body.accept(
new evalVisitor(new Cons(l.bindingVar.name, bv, env));

}
}

Notice the cast to Const in the definition of bv. Java requires this cast operation
because the declared return type of accept is Object. But the value we bind to a
variable to in a let expression must be a Const. What happens if we try to evaluate
a Var that is not bound in the environment? To explain how Java will behave in a
such a situation, we need to discuss Java exceptions in more depth.

1.12.2 Using Java Exceptions

A Java exception is an object of type Exception, which is a built-in Java class. There
are two basic forms of exceptions that can occur during Java program execution:

1. Unchecked exceptions, which extend the class RuntimeException, usually signal
a program coding error.

2. Checked exceptions, which extend the class Exception but not the class RuntimeException,
are intended to signal unusual but legal conditions that require deviation from
the normal flow of control.

When an EvalVisitor encounters a Var not bound in Env, it has detected an
error in the input expression. If the Arithmetic Expression evaluator is being used in
a larger program that can prompt the user for corrected input, then such an input
error should be handled as part of valid program execution. It does not indicate a
coding error in the Arithmetic Expression evaluator. Hence, when an EvalVisitor

encounters an unbound exception, it could throw a checked exception, which the larger
program can intercept and interpret, printing an error message such as

I’m sorry, that’s not a valid expression
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and prompt the user for corrected input with a message like

Please enter a valid expression:

Java requires an explicit throws clause in the header for any method that can
generate a checked exception, directly or indirectly by invoking another method. The
EvalVisitor class defined above will return null or generate a

NullPointerException

if it encounters an unbound variable. The lookup method will return null as the
value of an unbound variable. Any subsequent attempt to use such a value as a Const

(e.g., in computing a Sum) will generate a

NullPointerException

. Since this exception is unchecked, it does not need to be declared in throw clauses.
If we rewrite lookup to throw a checked UnboundException instead of returning

null, the change has a dramatic impact on the rest of the program. The revised code
appears below:

class UnboundException extends Exception {
UnboundException(String name) {

super("Variable " + name + " is unbound");
String varName = name;

}
}

class Env {
abstract Const lookup(String name) throws UnboundException};

}

class Empty extends Env {
Const lookup(String name) throws UnboundException} {

throw UnboundException(name);
}

}

class Cons extends Env {
String firstName;
Const firstVal;
Env rest;

Cons(String name, Const val, Env env) {
firstName = name;
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firstVal = val;
rest = env;

}

Const lookup(String name) throws UnboundException} {
if (name.equals(firstName)) return firstVal;
else return rest.lookup(name);

}
}

class EvalVisitor implements Visitor {
Env env;
Object forConst(Const c) { return c; }
Object forSum(Sum s) throws UnboundException { ... };
Object forProd(Prod p) throws UnboundException { ... };
Object forVar(Var v) throws UnboundException { ... };
Object forLet(Let l) throws UnboundException { ... };
}

}

interface Visitor {
Object forConst(Const c) { return c; }
Object forSum(Sum s) throws UnboundException;
Object forProd(Prod p) throws UnboundException;
Object forVar(Var v) throws UnboundException;
Object forLet(Let l) throws UnboundException;

}

The preceding code cleanly handles input errors, but it pollutes the signatures of
nearly all of the for methods in the class Visitor and its descendants. In this case,
an unchecked exception is preferable. The code for this variation is identical the code
above except for the extends clause in the definition of class UnboundException and
the elimination of all throws clauses in for methods.

Checked exceptions and polymorphic programming do not mix well. Conse-
quently, it should not be surprising that the Java libraries use unchecked exceptions
far more than they use checked exceptions. Our advice is use checked exceptions to
signal unusual conditions in code that does not involve polymorphism. If polymor-
phism is present, use unchecked exceptions instead.

1.12.3 Exception Handling

If the evaluation of a Java statement generates an exception, that exception can
be caught (consumed) and processed by an appropriate handler associated with the
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statement. The handler typically restores the program to a recoverable state.
The Java construct for associating exception handlers with program statements is

called a try-catch block. It has the following syntax

try {
statement1;
...
statementm;
}
catch(ExceptionType1 e) { handler1 }
... catch(ExceptionTypen e) { handlern }

This statement associates the handlers described by handler1, ..., handlern with the
statements in the sequence

statement1; ...statementm;

If any statement in this sequence generates an exception e, it is matched against
the types ExceptionType1, ..., ExceptionTypen in order. The handler code for the
first type containing e is executed and the exception e is consumed. Then execution
resumes at the statement immediately following the try-catch block. If no type
in the catch clauses matches the generated exception e, program execution searches
back up the chain of pending method calls until it finds the next “youngest” pending
try-catch block with a matching catch clause. If this search exhausts the chain of
pending method calls, the Java Virtual Machine prints an error message, a traceback
of method calls from the point of exception generation, and aborts program execution.

Since the exception is consumed by the matching catch clause, the program text
surrounding the try-catch block does not see the exception. More generally, if
a try-catch block includes a catch clause for exception type E, the surrounding
program text can never see an exception of type E emerge from the try block. As
a result, if the exception type E is checked, the containing method need not declare
a throws clause for type E unless other code, unshielded by an enclosing try-catch

block, can generate exceptions of type E.
A try/catch block can optionally be followed by a finally clause

finally {
cleanUp
}

This clause is always executed when the try block terminates (including any required
handler code). It typically contains code to perform any clean up that might be
necessary after executing the statement sequence enclosed by the try/catch block,
regardless of whether the statement sequence generates an exception. In other words,
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the finally clause is always executed (assuming the statement sequence does not loop
infinitely). The most common usage of the finally clause is to release a explicitly
allocated resource such as an opened file.

We illustrate the use of the try-catch-finally block by the following example.
Suppose the main method of the ArithExpr class contains test code for expression
evaluation. The main method can protect itself from the exceptions eval might throw
by enclosing its invocation in a try-catch block as follows:

ArithExpr a = ...; // set the expression
Env.e = ...; // set up the environment

...
try { // try the operation that might fail
...
result = a.eval(e);
...

}
catch (UnboundException u) { // handle any error that occurred
System.out.println ("Unbound exception thrown: " + u.varName +

" is undefined.");
}
finally { // optional clean-up
...

}
... // continue with processing

The operation that might throw the exception, eval, is placed inside a try block,
and the handling code for the exception appears in a following catch block. There
may be more than one catch block, each for a different type of exception. The type
and a name for the caught exception is declared at the top of the catch block, and
the code in the block can use the exception’s fields to perform some kind of error
recovery. Here this recovery is simply printing a message that describes the problem.

The finally clause would be useful if the try block read each expression a from
a separate file and eval could throw other exceptions besides UnboundException. In
this case, the finally clause could close the file regardless of how execution of the
try block terminated.

If the code in the try block raises no exceptions, or raises an exception that
matches a catch clause, execution continues immediately after the try-catch block
and optional finally clause. Of course, the finally clause is executed as part of
the try-catch block.
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1.12.4 Recommendations Based on Software Engineering Ex-
perience

Prior to building DrJava, I thought the concept of checked exceptions might be intel-
lectually defensible in some cases. But after man years of experience in the software
development trenches, I now believe that checked exceptions are a terrible idea and
should be avoided whenever possible. As the example in the preceding section shows,
checked exceptions pollute any code that uses them including code that incidentally
calls a method that in some bizarre erroneous scenario throws a checked exception.
As a result, checked exceptions make code refactoring much more tedious and diffi-
cult, impeding agile approaches to software develoment like Extreme Programming.
In addition, checked exceptions make it painful to write any transient debugging code
involving operations that throw checked exceptions. These exceptions must be caught
in the context immediately surrounding the transient code. Similarly, assert state-
ments cannot mention methods that potentially (based on conservative control flow
analysis) throw checked exceptions. In short, checked exceptions were a superficially
interesting idea that turned out to be ill-considered.

In DrJava, checked exceptions only appear is in code that directly interacts with
Java library code that uses checked exceptions. DrJava also includes an exception
class called UnexpectedException that we use to wrap checked exceptions in places
where they cannot be appropriately handled. They typically bubble up to the top
level where an UncaughtExceptionHandler catches and logs them.

1.13 Full Java

The DrJava language levels facility enforces all of the invariants required to sup-
port programming with immutable data in Java by banning language constructs that
mutate data and automatically generating the standard operations for algebraic data
types. In Scheme, all of our data types with the exception of functions were algebraic.

Given a class declaration C with instance fields f1, . . . , fn, the Elementary and
Intermediate langauge levels in DrJava automatically generate:

• a constructor for C that takes arguments v1, . . . , vn corresponding to the fields
and initializes each field fi to the value vi;

• 0-ary accessor methods named f1, . . . , fn that extract the fields f1, . . . , fn from
receivers of type C;

• overrides the equals(...) method to perform structural equality testing;
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• overrides the int hashCode() method to generate hash codes consists with the
overridden defintion of equals11

• overrides the toString() method to generate a readable, structural description
of the object.

These language levels also declare all instance fields as private and final, all vari-
ables as final, and all methods as public.

To enforce the immutability of data, the Elementary and Intermediate langauge
levels prohibit assignments to variables except for initialization when the variable
is defined. In addition, the Elementary language level prohibits static members,
explicit visiblity modifiers, interfaces, and anonymous classes. The Intermediate level
supports static fields, explicit visiblity modifiers, interface, and anonymous classes,
but prohibits static methods.

1.13.1 Overriding equals

As an example of inheritance, consider the method

public boolean equals(Object o);

which is defined in the class Object, the superclass of all Java classes. Any Java
class that is defined without a designated superclass is an immediate subclass of the
Object class. In the class Object, equals is defined to mean Object identity. Two
object references are identical if and only if they refer to exactly the same object
(produced by a particular new operation).

For some classes, identity is the appropriate definition for equality, but for many
others it is not. In fact, for all functional algebraic types, the appropriate definition
of equality is structural: two objects are equal iff they belong to the saem class and all
of their fields are equal. Hence, the DrJava langauge levels facility always overrides
the equals method to define structural equality.

Many of the classes in the Java libraries also override equals to suppor structural
equality. Some prominent examples include the String class and all of the wrapper
classes corresponding to the primitve types.

The overriding of the equals method is particularly delicate because the Java
libraries all assume that equals defines an equivalence relation–except on the argu-
ment null, which is treated as a special case. In particular, for all non-null x and
y, x.equals(y) iff y.equals(x). If the argument to equals is null, then the Java

11Java stipulates that equals and hashCode should obey the invariant: x.equals(y) implies
x.hashCode() == y.hastCode(). The default definition for hashCode typically returns the initial
address of the object in memory.
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API specification stipulates that equals must return false.12 If the class containing
the overriding definition of equals can be extended (subclassed) then the coding of
equals is quite subtle.

In particular, the overriding definition must confirm that the argument o belongs
to exactly the same class as this. Assume that we are overriding the definition of
equals in the composite class hierarchy IntList given in Section 1.5.2 above. The
following code for the definition of equals in the Cons does not work in general!

public boolean equals(Object o) {
return (o != null) && (o instanceof Cons) &&
(first == ((Cons)o).first) && rest.equals(((Cons)o).rest);

}

This code can fail if Cons has a subclass ExtCons because equals can report that
an instance of ExtCons is equal to an instance of Cons. Even worse, if equals is
overridden in ExtCons using the same instanceof pattern,

public boolean equals(Object o) {
return (o != null) && (o instanceof ExtCons) &&
(first == ((ExtCons)o).first()) && rest.equals(((ExtCons)o).rest());

}

a.equals(b) does not imply b.equals(a) For example, if a is an instance of Cons
and b is an an instance of ExtCons with exactly the same first and rest fields as a,
a.equals(b) will be true while b.equals(a) will be false (because a instanceof

ExtCons is false.
The problem with the instanceof pattern for writing equals is that instanceof

does not test for an exact class match. We can compare the classes of objects by
using the method getClass() which is inherited by all classes from Object. This
method returns an instance of the class Class representing the class of the receiver
object. In addition, we can get the Class object for any specific class C, simply by
typing C.class. Every class has exactly one Class object representing it. Hence,
the equals method for Cons above can be rewritten:

public boolean equals(Object o) {
return (o != null) && (o.getClass() == Cons.class) &&
(first == ((Cons)o).first) && rest.equals(((Cons)o).rest);

}

12This part of the equals specification is poorly designed because it unnecessarily complicates the
behavior of equals without providing any useful benefit. A better specification would have stipulated
that the behavior of equals on null was unspecified because null is outside the intended domain
of the method.
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Finger Exercise Load the sample program intList into the DrJava Definitions pane.
Override the definition of equals for both Empty and Cons to match the definition
of the equal? function in Scheme on lists of integers. The Scheme equal? function
compares two lists to determine if they contain the same sequence of elements. Try
evaluating a substantial set of test cases in the Interaction pane of DrJava. �

Finger Exercise Load your saved program IntList.java into the DrJava Def-
initions pane. Override the definition of equals for both Empty and Cons to match
the definition of the equal? function in Scheme on lists of integers. The Scheme
equal? function compares two lists to determine if they contain the same sequence
of elements. Try evaluating a substantial set of test cases in the Interaction pane of
DrJava. �

1.13.2 Visibility

The coding of non-trivial methods often involves the use of auxiliary methods called
“help” methods. The specified operation may be easily derivable from another oper-
ation that has a simpler definition. For example, in the preceding definition of the
composite class hierarchy IntList, we introduced a helper method toStringHelp

to help support the printing of lists in the same format that Scheme uses. The
toStringHelp prints the rest of a non-empty list with a leading blank before each
element but no trailing blanks or closing parenthesis.

Since helper methods are defined strictly for the use of code within the class, we
would like to prevent the definition from “leaking” outside the class. Java provides
a mechanism for preventing such leaks. Class members can be assigned one of four
visibility levels private, default, protected or public. private members are visible
only within the class in which they are defined. Default members are visible only
within the package in which they are defined. protected members are visible in the
package in which they are defined and in subclasses of the defining class. public

members are visible everywhere.
In section ??, we stated that the only way to access the fields of an object is

through “getter” methods provided by the class definition. If we always declare the
instance (non-static) fields of a class as private, then this statement is completely
accurate. We strongly recommend following this convention; it supports to the object-
oriented principle of separating the implementation of a class from its interface.

We have avoided mentioning the Java package system until now because it is
not helpful in writing programs of modest size. Large Java programs typically are
partitioned into packages analogous to the file directories in a tree-structure file sys-
tem. Each package, except for the “default” package discussed below, has a unique
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name consisting of one or more Java identifiers separated by periods. Hence java,
java.lang, and java.awt.event are are all valid package names.

Every Java class belongs to some package. If a source file does not mention
a package name, then it is considered part of a special “default” package with no
name. In this monograph, we will use the default package for all of the code that we
write. On the other hand, all of the Java core library code that we will use resides
in named packages. The Java libraries are partitioned into packages like java.util,
java.awt, java.awt.event and javax.swing. Packages are not nestable. There is
no connection between java.awt and java.awt.event other than a common name
prefix.

The private attribute is well-suited to hiding helper methods that aren’t required
in subclasses. The protected attribute is useful when helper methods are refer-
enced in subclasses residing in other packages. In our example above, toStringHelp
is accessed by all of the subclasses of IntList. Hence, the appropriate protection
mechanism for our toStringHelp is either default or protected. Since all our pro-
gram classes reside in the same package, it doesn’t matter. However, if we wanted
to define subclasses of IntList in another package, we would need to declare the
toStringHelp method as protected to make it visible within these subclasses.

When an inherited method is overridden, it cannot be made less visible. Hence,
an overridden public method must be declared as public. On the other hand, an
overridden protected method may be declared as public.

Finger Exercise Load the sample IntList program into the DrJava Definitions
pane. Convert the test method to a private method. Confirm that the main

method for the IntList class still executes the test suite for the sum method. In the
Interactions pane, try evaluating the following sequence of statements:

IntList l = new Cons(17, new Cons(13, Empty.ONLY));
l.test(30);

�

1.13.3 Mutability

In unrestricted Java programs, methods calls can modify the values of accessible
fields. In addition, code blocks within method bodies can change the values of method
parameters and local variables. These mutations can break critical invariants, such
as the fact that Objects used as keys in a hash table must be immutable for hashed
lookups to work correctly. For this reason, Java includes a variable modifier called
final that can be used to mark variables that do not change. All of the fields, method
parameters, and local variables in the Elementary and Intermediate levels of DrJava
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are implicitly final but in full Java, this property must be specified for each such
variable at the point where it is declared.

In most cases, the final modifier is simply a clean way for programmers to declare
that a variable is never modified and instruct the compiler to enforce this restriction,
but there is one important usage of final variables discussed below where the omis-
sion of the final modifier can convert a well-formed program into a syntactically
incorrect one.

Local Variables in Anonymous Classes

Java imposes an important restriction on the use of local variables in anonymous
classes. Any local variable mentioned in an anonymous class definition must be de-
clared final. In practice, this is not a significant restriction. In fact, most attempted
uses of non-final local variables in anonymous classes correspond to errors in pro-
gram logic. In any case where you need to mention a non-final local variable in an
anonymous class, you can simply introduce an extra final variable with the required
value. Ironically, this transformation often converts a logically incorrect program in
to a correct one! We will revisit this issue in later in the monograph in connection
with programming graphical user interfaces.

1.13.4 Other Java Language Features

We have covered all of the constructs in the core of Java. We will introduce a few more
language constructs in the sequel, namely nested classes and concurrency features, as
they are needed.



Chapter 2

Object-Oriented Data Structures

The traditional programming curriculum focuses far more attention on efficient algo-
rithms than on clean program design. Nearly all existing books on data structures
including those that use C++ and Java fail to apply good object-oriented design
principles in presenting interesting data structures. In this chapter, we will show how
to formulate some of the most common data structures in an object-oriented design
framework. Enjoy!

2.1 Sequences

The first data structures that we will discuss are the common representations for
sequences of elements. A sequence is an ordered collection s0, s1, s2, ..., sn, n >= 0 of
data objects drawn from some base data type D. Sequence representations can be
classified based on the set of operations that they support. In Java, it is convenient
to describe these various sets of operations as Java interfaces.

We have already used a common representation for sequences, namely functional
lists, in many of our examples of functional programming in the preceding chapter.
Before we explore general representations for sequences, we need to discuss a partic-
ular formulation of sequences called arrays, which are built-in to Java as they are in
nearly all other programming languages.

2.1.1 Arrays

An array is an indexed sequence s0, s1, s2, ..., sn, n >= 0 of data values of fixed length.
In contrast to more general representations for sequences an array object cannot grow
or shrink. It has a specific length n >= 0 when it is created and retains this length
during its entire lifetime. Java arrays are almost identical to Scheme vectors; the
only difference is that every array in Java has a declared type T[] asserting that all
elements of the array have type T . All of the primitive operations on arrays in Java

98
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preserve the declared types attached to arrays. Given an array a of type T[], the
expresssion a[i] extracts the ith element of the array, which must be a value of type
T . Array indexing begins with the integer value 0 as in Scheme, C, and C++. Hence,
an array of length n has valid indices of 0, 1, ..., n− 1.

The assignment operator = is used to update array elements. Given an array a of
type T[], the statement

a[i] = e;

updates the value of the ith element to the value of the expression e. The values of
all other elements of a remain unchanged.

In Java, arrays of every type are built into the language. If you define a class or
interface C, then the array type C[] is automatically supported by Java. Every array
type is a subtype of type Object, but array types cannot be extended. In essence,
Java arrays are identical Scheme vectors augmented by an enforced type constraint.
If a Java variable has type T[] for some primitive or object type T then it can only
be bound to arrays containing elements of type T . Every Java array has a int field
length that contains the length of the array.

Since Java arrays are objects, a Java array value is actually a reference to an array.
Hence, a variable of type T[] in Java can have the value null. A variable of type
T[] can appear on the left-hand side of an assignment

a = e

where e is any expression of type T .
Since array values are references to arrays, two variables can be bound to exactly

the same array. If array variables a and b are bound to the same array object, then
updating an array of a

a[i] = e;

changes the value of b[i]. Scheme variables bound to vectors have precisely the same
property.

Arrays are allocated in Java using the new statement just like other objects. The
array form is

new T[length]

where T is any type and length is an expression that evaluates to a non-negative int.
Arrays can have length 0. Each element of the array is set to the ‘zero” value of the
declared type T . If T is an object type, the initial value of each element is null.
Hence, the expression

new String[1000]



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 100

allocates an array of 1000 String elements all bound to null.
Java has alternate form for constructing an array called an anonymous array. The

expression

new T[] {v0, ...vn−1}

allocates an array of length n of type T containing the specified sequence of elements.
Java uses two mechanisms to enforce the declared type T[] of an array object.

First, when an array T[] is allocated, all of the initial element values must be of type
T . Second, when an array object a of type T[] is updated by an assignment

a[i] = e

Java confirms that the the new value e for the ith element belongs to the type T .
During program execution, the Java virtual machine confirms the the value e belongs
to type T each time that the assignment is executed.

The array-assignment check must be performed at run-time because an array
object of type S[] can be stored in a local variable or field of type T [] where S is a
subtype of T . Hence, in the preceding array assignment, the declared (static) type
T of e could match the declared type T [] of the array variable a, yet the assignment
could fail at run-time because the value of a is an array of type S where S is a proper
subtype of T .

The Java type system permits an array variable of type T[] to be bound to an
array A of type S[] provided S ⊆ T . This property of the Java type system is
called covariant subtyping. Note that covariant subtyping implies that the array type
Object[] is a supertype for all object array types, which permits arrays to be treated
polymorhically in many situations.

Recipes for Processing Arrays

Arrays do not have the same internal structure as lists: an array of length n does
not contain an array of length n − 1 as a component. Hence, the structural design
recipes for processing lists do not directly apply to lists. But it is easy to mimic the
structural decomposition of lists as follows. Given an array

A = a0, ..., an−1

we define the slice
A<k,l>

where k ≥ 0 and l ≤ n as the sequence of elements

ak, ..., al−1
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Since array slices are not arrays, we cannot pass them to helper functions as array
values. Instead we must pass three values in the general case: the array A, and
the two int bounds k and l. Fortunately, in most list processing recipes one of two
bounds is always fixed (either k at 0, or l at n), so we only need to pass two values.

Assume that we want write a static method int sum that takes an argument a

of type int[] and returns the sum of the elements of a. If we were summing the
elements of a list instead of an array, we could use the natural recursion scheme on
lists to reduce summing a compound list (a Cons) to summing its tail (the rest

component of the list). (See Section 1.5.2.) We can use exactly the same scheme to
sum an array provided that we use array slices instead of array values. To process
slices, we must write a helper method sumHelp that takes arguments a and k of type
int[] and int respectively and returns the sum of the elements in the array slice
a<k,n> where n is the length of the array a. An empty slice corresponds to the case
where k ≥ n. A compound slice corresponds to the case where k < n.

The following Java code implements the sum method

class ArrayUtil {
public static int sum(int[] a) {

// returns a[0] + ... + a[a.length-1]
return sumHelp(a,0);

}
public static int sumHelp(int[] a, int k) {

// given 0 <= k < a.length
// returns a[k] + ... + a[a.length-1]
if (k >= a.length) then return 0;
else return a[k] + sumHelp(a, k+1);

}
}

From the standpoint of computational efficiency, neither the structurally recursive
program or the equivalent program on array slices written above is optimal because
neither one is tail-recursive. A method definition is tail-recursive if recursive calls
only appear in tail-position, the last operation before returning from the method. In
Scheme, the standard recipe for converting such a computation to tail recursive form
involves writing a help function with an accumulating parameter and summing the
elements in the opposite order (left-to-right instead of right-to-left). We can convert
our array slice solution to tail-recursive form using the same transformation.

The following Java code implements a tail-recursive solution using array slices:

class ArrayUtil {
public static int sum(int[] a) {

return tailSumHelp(a,0,0);
}
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public static int tailSumHelp(int[] a, int k, int accum) {
/* given 0 <= k < a.length returns
* accum + a[k] + ... + a[a.length-1] */
if (k >= a.length) then return accum;
else return tailSumHelp(a, k+1, accum+a[k]);

}
}

In languages that do not support the efficient translation of tail-recursive pro-
cedures to machine code, tail recursive (also called iterative) computations must be
expressed in the more restrictive framework of for and while loops to produce ef-
ficient code. A tail-recursive procedure is a more general framework for expressing
iterative computations than structured loops! In contrast to structured loops, tail-
recursive procedures gracefully accommodate iterations with exit conditions; each
procedure return clause that is not a tail-recursive call is an exit. To translate the
an iterative program expressed using tail recursion to one expressed using a loop,
the corresponding loop construction must have multiple exit jumps (implemented as
break or go to).

Java has three familiar looping constructs: while loops, do ... while loops,
C-style for loops. The first two constructs are completely standard. A while loop
has syntax:

while (test) do statement

where statement is usually a block. A block is simply a sequence of local variable
declarations and statements enclosed in braces. The test expression must have boolean
type. A do while loop has syntax:

do statement while (test);

The only difference between the two looping constructs is the obvious one. In a while

loop the test is executed before the loop body is executed. In a do while loop the
loop body is executed before the test expression is evaluated.

The Java for loop is borrowed from C. It has the form

for (init-expr; test; incr-expr) statement

which simply abbreviates the following code fragment containing a while loop:1

init-expr;
while (test) { statement;
incr-expr; }

1With one minor exception involving the use of continue in the loop body. Since our Java subset
does not include continue, it is not an issue.
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Let us return to our tail-recursive Java program that sums the elements of an
array. Fortunately, we can translate this tail-recursive procedure directly to a simple
while loop. All that we have to do is replace the recursive call by a block of code that
updates the procedure parameters to reflect values passed in the tail call2 and jumping
back to the beginning of the procedure (using while (true)) instead performing the
tail call.

class ArrayUtil {
public static int sum(int[] a) { return tailSumHelp(a,0,0); }
/** Returns a[k] + ... + a[a.length-1] asuming 0 <= k <= a.length */
public static int sumHelp(int[] a, int k, int accum) {

while (true) {
if (k >= a.length) return accum; // no recursive call
accum = accum + a[k];
k = k+1; // k must be modified last

} // recursive call
}

This single exit loop can be rewritten as a conventional for loop and folded back in
the sum method as follows:

class ArrayUtil {
/** returns a[0] + ... + a[a.length-1] */
public static int sum(int[] a)

int accum = 0;
for (int k = 0; k < a.length; k++) {
/* accum == a[0] + ... + a[k-1] */
accum = accum + a[k];

}
return accum;

}
}

The expression k++ is an abbreviation for

k = k+1;

The resulting program uses the most attractive idiom in imperative programming:
the for loop. This form of processing forms the basis for the most commonly used
imperative design pattern: the iterator pattern. We will discuss this pattern in detail
in Section 2.1.7.

We now turn our attention to more general data representations for sequences
that accommodate operations that change sequence length.

2Taking care to avoid interference from side effects!
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2.1.2 Lists

By convention, linked representations of sequences are called lists. This represen-
tation of sequences is so pervasive that the terms sequence and lst are often used
interchangeably (conflating the abstraction and the implementation). A particularly
important distinction between sequence interfaces is whether or not an interface in-
cludes operations that mutate (destructively modify) the object this. For example, if
a sequence object x contains the Strings "Corky" and "Matthias", does any opera-
tion on the object x permit the contents of x to be modified, i.e., changing, adding, or
subtracting elements? Operations on x that construct new sequences that incorporate
the contents of x are not mutators because the object x is left unchanged.

Immutable data types are easier to define, to use, and to implement than mu-
table data types, but they they have two important limitations. First, they do not
support some computations efficiently. Second, object mutation plays a critical role
in the natural modeling of some computational problems. The functional model of
computation that we studied in Chapter 1 is exclusively concerned with immutable
data. The term “functional list” is synonymous with “immutable list”.

We will focus first on immutable sequences and their representations. Then we
will investigate what adjustments must be made to support mutation.

2.1.3 Immutable Sequences

All of the sequence classes presented in this monograph—immutable and mutable—
support the operations in the following Seq interface

interface Seq {
Seq empty();
// returns Seq that is empty

Seq cons(Object newElt);
// returns the Seq with elts newElt, s[0], ..., s[n]

Object first(); // returns the element s[0]
Seq rest(); // returns an object representing s[1], ..., s[n]
Object eltAt(int i); // returns the element s[i]
boolean isEmpty(); // returns n == 0

public Object execute(SeqVisitor host); // applies the visitor code host
}

interface SeqVisitor {
Object forEmpty(Seq host);
Object forCons(Seq host);
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}

The contracts for all of these operations stipulate that they do not modify the ob-
servable state of a sequence object.

Immutable sequence classes also support the two additional functional operations
in the following interface:

interface FinalSeq extends Seq {
Seq updateFirst(Object val); // returns val,this[1], ...,this[n]
Seq updateRest(Seq r);
// given r[0],...,r[m] returns this[0],r[0], ..., r[m]

}

These two operations return new sequence values; they do not modify this.
There are two widely used representations for immutable sequences: linked and

contiguous.

Linked Representation

In the linked representation, a sequenceis a (reference to) an object, which is either
an empty node, representing the empty sequence, or a cons node with a field of type
T containing the first element of the sequence and a field of type Seq containing a
pointer to the first node in the rest of the sequence. This data representation, which
is often called a linked list, directly corresponds to the standard inductive definition
of sequences. We defined this sequence representation in Section 1.10.5 as the class
List, but that definition did not support all of operations listed above. The following
modification of the List composite class hierarchy from Section 1.10.5 defines a linked
representation for lists of objects; it includes all of the FinalSeq operations:

abstract class List implements FinalSeq {

/* function methods */
public Seq empty() { return EMPTY; }
public Seq cons(Object first) { return new Cons(first, this); }
public abstract Object first();
public abstract Seq rest();
public abstract Object eltAt(int i);
abstract public boolean isEmpty();

/* mutators */
public abstract Seq updateFirst(Object f);
public abstract Seq updateRest(Seq r);

abstract String toStringHelp();
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// List -> String without any parentheses and leading blanks

static final Empty EMPTY = new Empty();

private static class Empty extends List {

/* constructor */
private Empty() {}

/* methods */
public Object first() {
throw new IllegalArgumentException("first() applied to empty list");

}
public Seq rest() {
throw new IllegalArgumentException("rest() applied to empty list");

}
public int isEmpty() { return true; }

public Seq updateFirst(Object o) {
throw new IllegalArgumentException("updateFirst() applied to empty list");

}
public Seq updateRest(Seq s) {
throw new IllegalArgumentException("updateFirst() applied to empty list");

}
public Object eltAt(int i) {
throw new IllegalArgumentException("out-of-bounds index in List.eltAt");

}
public Object execute(SeqVisitor v) { return v.forEmpty(this); }
public String toString() { return "()"; }
public String toStringHelp() { return ""; }

}

class Cons extends List {

/* fields */
private final Object first;
private final List rest;

/* constructor */
Cons(Object f, List r) {
first = f;
rest = r;

}
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/* methods */
public Object first() { return first; }
public Seq rest() { return rest; }
public int isEmpty() { return false; }

public Object eltAt(int i) {
if (0 == i) return first;
else return rest.eltAt(i-1);

}
public Object execute(SeqVisitor v) { return v.forCons(this); }

public Seq updateFirst(Object o) { return rest.cons(o); }
public Seq updateRest(Seq r) { return r.cons(first); }

public String toString() { return "(" + first + rest.toStringHelp() + ")"; }
String toStringHelp() { return " " + first + rest.toStringHelp(); }

}
}

The definition of the List class contains nested class definitions for the classes Empty
and Cons. The static attribute identifies these classes as nested classes rather than
inner classes. Nested classes are identical to conventional “top-level” classes except
for two minor differences.

• First, nest classes have qualified names (of the form containing-class-name.nested-
class-name).3 The full names for the classes Empty and Cons are List.Empty

and List.Cons, respectively. Within the body of the List class, the unqualified
names Empty and Cons are synonymous with the qualified names.

• Second, nested classes can be declared as private, making their names invisible
outside the body of the containing class. Hence, the classe names List.Empty

and List.Cons are not defined outside of the body of the List class. If we
removed the private attribute for the Empty class above, then the classes

In contrast to instances of inner class, instances of nested classes do not have enclosing
instances. Section 2.1.6 discusses nested and inner classes in more detail.

The for.. methods in the SeqVisitor interface all take a host argument of
type Seq because the implementation is not constrained to use the composite pattern
to represent immutable sequences. The following visitor class implements sequence
concatenation:

3Since classes may be nested to any depth, multiply nested classes have multiple qualifiers, one
for each level of nesting.
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class Append implements SeqVisitor {

// returns sequence host || that
/* fields */
Seq that;

/* constructor */
Append(Seq t) { that = t; }

/* methods */
public Object forEmpty(Seq host) { return that; }
public Object forCons(Seq host) {

return host.updateRest((Seq) host.rest().execute(this));
}

public static void main(String[] args) {
Seq s1 = List.EMPTY.cons("B").cons("A");
Seq s2 = List.EMPTY.cons("C");
System.out.println("s1 = " + s1);
System.out.println("s2 = " + s2);
System.out.println("s1 * s2 = " + s1.execute(new Append(s2)));

}
}

The following figure shows a picture of linked list of integers.

In the figure, the nodes with two fields are Cons instances, and the crossed-box is
an Empty instance. References (pointers) are represented by the heavy arrows. The
reference fields in the cells are in fact memory addresses. In Java, these addresses are
always interpreted as references to objects. Java only supports operations on refer-
ences that are consistent with this abstraction, e.g. you cannot perform arithmetic
on a reference. In lower-level languages like C and C++, references (pointers) can be
manipulated as ordinary integers.

Finger Exercise Write a SeqVisitor class to reverse a Seq. Test your code using
DrJava. Hint: introduce a helper visitor with an extra parameter to accumulate the
result. �
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Contiguous Representation

In the contiguous representation, a sequence is represented by a reference to an im-
mutable array of fields of type T. An immutable array is an array that, once initialized,
is never modified. Java doesn’t directly support immutable arrays, but a Java pro-
gram can enforce immutability by defining a wrapper class for arrays (akin to the
Integer class for wrapping ints in objects) with a single private field holding the
embedded array and a collection of public methods that do not mutate this field.
A lighter weight but less robust protocol for supporting immutable arrays is to use
comments to indicate which arrays are immutable and to follow the discipline of never
modifying arrays documented as immutable. In either case, a new array object gen-
erally must be created whenever an element of the represented sequence is changed,
added, or removed. Creating an array object is a costly operation proportional in
time and space to the number of elements in the new array.

In the linked representation of sequences, every operation in the collection listed
above except eltAt can be performed in constant time. On the other hand, the eltAt
operation takes time proportional to the length of the sequence in both the worst case
and the typical case. The List implementation of sequences given in chapter 1 has
this property.

The performance trade-offs embodied in the immutable array implementation are
very different. In this implementation, the operations empty, first, length, eltAt,
can be performed in constant time. (In the Java array implementation, length is
stored in a separate “field” in the block of storage holding the array.) With the
exception of the rest operation, the remaining operations all take time proportional
to the length of the sequence. The running time of the rest operation depends on an
interesting implementation detail. If immutable arrays are implemented as instances
of a “wrapper” class, then the rest operation can be performed in constant time at
the cost of making an extra field reference in the implementation of eltAt. A wrapper
object can store an integer offset that is added to the index passed as an argument to
eltAt. In this scheme, the rest operation constructs a new wrapper object containing
a pointer to the same array object as this but an increased offset (by one). If
immutable arrays are implemented directly by Java arrays, then rest operation must
construct a completely new array one element shorter than the original.

Finger Exercise Construct two implementations of an ImmutArray wrapper class
that represents sequences as arrays. Do not include an offset field in the first imple-
menation. Include a offset field in the second implementation. Test the Append and
Reverse visitors written in the context of the linked representation above and your
contiguous implementations. Conduct some experiments to measure the performance
impact of including the offset pointer. For each implementation, can you devise a test
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program that favors it? �

In practice, array representations of immutable sequences are generally not used in
computations that make extensive use of the cons and empty operations to construct
new sequences. The repeated copying of arrays required to support these operations
is very inefficient (proportional to the square of the length of the constructed array!)

Finger Exercise Let n be the length of a sequence host represented either as a
linked list or an array. Prove that the computation

host.execute(new Append(host.empty()))

runs in time O(n) in the linked representation, O(n2) in the contiguous representation
(with or without an offset field). �

The usual way to avoid this source of inefficiency is to include an operation in the
immutable array class that constructs an array representation for a sequence given
either a corresponding linked representation or mutable array representation. The
Java Foundation classes include both the immutable string (sequence of char) class
String and the mutable string class StringBuffer for this reason.

The array implementation of immutable sequences is a good choice when new
sequences are generally built from scratch rather than constructed by applied opera-
tions to existing sequences. For this reason, many computations involving immutable
sequences of characters (strings) rely on the array representation. The Java String

class implements the array representation for immutable sequences of characters (the
primitive type char in Java). Note that Java includes an operation for converting
mutable strings (represented by the Java class StringBuffer) to immutable strings
(represented by the Java class String). Strings can be incrementally constructed
from characters far more efficiently using the StringBuffer class that they can be
using the String class.

2.1.4 Mutable Sequences

A sequence implementation is mutable if it includes operations that modify the value
of this. A class representing mutable sequences implements a subset of the following
operations:

interface SeqObject extends Seq {

void setFirst(T f); // this = this.updateFirst(f)
void setRest(Seq r); // this = this.updateRest(r)
void set(Seq v); // this = v
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void setEltAt(int i, T val); // changes s[i] in this to val
void insert(Object o); // inserts o in front of s[0] in this
void remove(); // removes s[0] from this

}

As with immutable sequences, there are two basic implementation schemes for muta-
ble sequences: linked and contiguous. Mutation complicates the implementation of
linked representations, which we examine in detail below.

Singly-linked Mutable List Representation

The various linked mutable list representations that we will study are all derived from
the standard linked representations for immutable sequences. A particularly simple
approach to sequence mutation is to represent a mutable sequence as a variable x of
immutable list type and implement mutation by assigning a new value to the variable,
e.g.

List x = empty();
.
.
.
x = cons(0,x);

But this approach fails to represent mutable lists as objects and to encapulate list
mutation as an ordinary method. This representation cannot implement the insert

method given above. In the list container representation, the insert operation mod-
ifies the program variable representing the mutable sequence, but variables are not
objects! When we pass an immutable lists represented by an assignable variable as a
method arguments, we can only pass the immutable list value to which the variable
is bound.

Finger Exercise Try to write an insert method for mutable sequences represented
by variables bound to immutable sequences. What goes wrong? �

2.1.5 List Containers

A better approach is to define a container class with a single field that holds an
immutable sequence. Then we can update the mutable sequence by modifying the
contents of the field in the container object. For example, suppose we have a class List
that defines a list representation for immutable sequences. The following container
class works for any implementation of the Seq interface:
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class ListBox implements SeqObject {

private static Seq prototype = new ...;
// any instance of the class implementing Seq

/* fields */
private Seq value; // contents of ListBox: s[0],s[1],...,s[n-1]

/* constructors */
ListBox() { value = prototype.empty(); }
ListBox(Seq v) { value = v; }

/* visible accessor methods */
public Seq empty() { return new ListBox(); }
public Seq cons(Object newElt) { return new ListBox(value.cons(newElt)); }
public Object first() { return value.first(); }
public Seq rest() { return value.rest(); }
public Object eltAt(int i) { return value.eltAt(i); }
public boolean isEmpty() { return value.isEmpty(); }

/* visible mutator methods */
public void setFirst(Object o) { value = value.updateFirst(o); }
public void setRest(Seq r) { value = value.updateRest(r); }
public void set(Seq v) { value = v; } // set contents of box to v;

public void setEltAt(int i, final Object val) { // changes s[i] to val
return execute(new UpdateEltAt(i), val);

}

public void insert(Object o) { value = value.cons(o); }
// changes contents of this from s[0],...,s[n] to o,s[0],...,s[n]

public void remove() { value = value.rest; } // removes s[0] from the sequence

public Object execute(SeqVisitor v) { return value.execute(v); }
// apply visitor v to value and return result; value is UNCHANGED

/* inner classes */
private class UpdateEltAt implements SeqVisitor {

/* fields */
int index; // index of element to be updated
Object eltValue; // new value for updated element
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/* constructor */
UpdateEltAt(int i, Object e) { index = i; eltValue = e; }

/* visit methods */
Object forEmpty(Seq host) { throw
new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}
Object forCons(Seq host) {
if (index == 0) return new Cons(val, host.rest());
else return host.rest().execute(new UpdateEltAt(i-1));

}
}

The variable holding the Seq instance is now wrapped inside an instance of a class
(ListBox above) implementing the SeqObject interface. A method that accepts a
SeqObject as an argument can modify it.

In the preceding example, the use of the inner class UpdateEltAt warrants careful
study. This inner class is a private member of the ListBox class and hence inaccessible
outside of the class body. Since the inner class referenced only within the setEltAt

method, we could have placed the definition of UpdateEltAt as a declaration inside
the body of this method! In this case, the UpdateEltAt class would have been visible
only within the method setEltAt But such an embedded inner class definition can
be hard to read, so we elected to make a private member of the ListBox instead.

We have already seen a special case of inner classes, namely anonymous classes
that appear inside dynamic methods. The only difference between an inner class and
a conventional class is that every instance of an inner class has an enclosing instance of
the class C that textually contains its definition. The free variables in the inner class
refer to this class. In addition, the notation C.this refers to the “entire” enclosing
instance. Inner classes impose exactly the same restrictions on references to local
variables of the enclosing instance as anonymous classes do: any such local variable
must be declared final. Inner classes are discussed in more detail in Section 2.1.6.

In ListBox class, the methods insert, remove, and set modify the receiver of the
method invocation, so there is no need for them to return values. Consequently they
have return type void. Mutator methods typically have the return type void because
they embody commands that modify objects rather than functions that compute new
values based on the value of this.

The “lists as containers” representation of mutable lists is a very simple example
of the state pattern. In the state pattern, a mutable object contains a field of union
type (denoted by an abstract class or interface) representing the state of the object.
The object can easily change “shape” by updating the field to contain an instance of
a different class in the union. In the ListBox class, an empty list object can mutate
to a non-empty list object (or vice-versa) by modifying the contents of the value field
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containing a Seq, which is a union type.
Since the SeqObject interface extends the Seq interface, it inherits the visitor

interface from the immutable Seq interface. As a result, no visitor class implement-
ing the SeqVisitor interface can mutate a SeqObject! In particular, to mutate
fields of a ListBox object, we must use explicit assignment. Given a ListBox l and
SeqVisitor v that returns a ListBox, the assignment

l = (ListBox) l.execute(v);

updates l to the new value returned by the visitor operation.
The efficient operations on ListBox objects are precisely the efficient operations

on the underlying functional List class, namely, adding and removing elements at
the front of the list. Mutable lists in which elements can only added or removed at
the front are called stacks or LIFO (”last in, first out”) lists. Representing mutable
lists as containers holding immutable list values is well-suited to this form of usage.
The operations first, insert, and pop precisely match the usual operations push,
top, and pop on stacks.

The “container” representation for mutable lists is simple and easy-to-use but it
is poorly suited to many applications because it fails to support certain list operation
efficiently. This representation forces list nodes (Cons objects) to be recopied when-
ever the list is changed. To modify the list element with index i or insert and element
in front of the list element with index i, a computation must construct a new List,
copying the elements from the old List with indices less than i. We can avoid this
recopying process and avoid the potentially confusing distinction between immutable
list values and mutable list objects by using a mutable variant of functional lists
developed by Dung Nguyen and Steve Wong.

2.1.6 Quasi-Functional Lists

From the perspective of the public interfaces, quasi-functional lists differ from lists as
containers in two respects. First, quasi-functional lists require the list arguments for
setRest and set to be mutable list objects rather than immutable list values. Second,
quasi-functional lists support visitor operations that mutate list structure in addition
to the “purely functional” visitor operations corresponding to the SeqVisitor inter-
face. To capture these differences in the Java type system, we introduce two new
interfaces: a new mutable sequence interface called MutSeq:and a mutable visitor
interface called MutSeqVisitor:

interface MutSeq extends Seq {
void setFirst(Object f); // changes this.first = f
void setRest(MutSeq r); // changes this.rest = r
void set(MutSeq m); // changes this = m
void setEltAt(int i, Object val); // changes this[i] = val
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void insert(Object o); // changes this.first,this.rest = o,this
void remove(); // changes this = this.rest
Object execute(MutSeqVisitor m); // applies visitor operation m to this

}

interface MutSeqVisitor {
Object forEmpty(MutSeq host);
Object forCons(MutSeq host);

}

The MutSeq interface stipulates that the arguments to the operations setRest and
set must be list objects, (objects of type MutSeq) rather than the list values (objects
of type Seq) given in the SeqObject interface. The MutSeq interface also introduces
an execute operation to support visitor operations (objects of type MutSeqVisitor)
that mutate list structure. The MutSeqVisitor interface differs from the SeqVisitor
interface in one key respect: the host object must be a mutable list (object of type
MutSeq) rather than a list value (object of type Seq) enabling a visitor to destructively
modify the host. This MutSeqVisitor interface is not applicable to lists as containers
because the component rest fields embedded in the immutable list value are not
mutable! The pivotal difference between the QuasiList and ListBox classes is the
type of the rest field. A MutSeqVisitor can destructively modify both the first

and rest fields of the host by using MutSeq mutator methods setFirst and setRest.

class QuasiList implements MutSeq {

/* fields */
public static final Empty EMPTY = new Empty();

private List value;

/* constructor */
QuasiList() { value = new Empty(); }
private QuasiList(List v) { value = v; }

/* visible methods */
Seq empty() { return new QuasiList(); }
Seq cons(Object newElt) { return new QuasiList(value.cons(newElt)); }
Object first() { return value.first(); }
Seq rest() { return value.rest(); }
// rest returns a MutSeq (QuasiList) but the Seq interface mandates
// the weaker type!

Object eltAt(int i) { return value.eltAt(i); }
boolean isEmpty() { return value.isEmpty(); }



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 116

void insert(Object o) { value = new Cons(o, new QuasiList(value)); }

public String toString() { return value.toString(); }

void setFirst(Seq v) { value = value.updateFirst(v); }

void setRest(MutSeq m) { value = value.updateRest(m); }

void set(MutSeq m) { value = m.value; }

void setEltAt(int i, final Object val) {
/* inner class */
class UpdateEltAt implements MutSeqVisitor {
/* fields */
final int index; // index of element to be updated

/* constructor */
UpdateEltAt(int i) { index = i; }

/* visit methods */
Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");
}
Object forCons(MutSeq host) {

if (index == 0) return host.setFirst(val);
else return host.rest().execute(new UpdateEltAt(index-1));

}
}
execute(new UpdateEltAt(i));

}

void remove() { value = value.rest(); }

Object execute(SeqVisitor v) { return value.execute(v); }
// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) { return value.execute(v,this); }
// apply visitor v to value and return result; value may be CHANGED

/* inner classes */
private interface List {

abstract String toStringHelp();
// List -> String without any parentheses and leading blanks
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}

private class Empty extends List {

/* constructor */
private Empty() {}

/* methods */
Object first() {
throw new IllegalArgumentException("first() applied to empty list");
}
MutSeq rest() {
throw new IllegalArgumentException("rest() applied to empty list");
}
Object eltAt(int i) {
throw new IllegalArgumentException("out-of-bounds index in List.eltAt");

}
Object execute(SeqVisitor v) { return v.forEmpty(this); }
Object execute(MutSeqVisitor v) { return v.forEmpty(QuasiList.this); }
public String toString() { return "()"; }
public String toStringHelp() { return ""; }

}

private class Cons extends List {

/* fields */
private final Object first;
private final MutSeq rest;

/* constructor */
Cons(Object f, List r) {
first = f;
rest = r;

}

/* functional methods */
Object first() { return first; }
Seq rest() { return rest; }
/* MutSeq is the correct output type but Java does not support it */

Object eltAt(int i) {
if (0 == i) return first;
else return rest.eltAt(i-1);
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}

/* mutator methods */
void setFirst(Object o) { first = o; }

Object execute(SeqVisitor v) { v.forCons(this); }
Object execute(MutSeqVisitor v) { v.forCons(QuasiList.this); }

public String toString() {
return "(" + first + rest.toStringHelp() + ")"; }

String toStringHelp() { return " " + first + rest.toStringHelp(); }
}

}

The QuasiList implementation given above uses the state pattern to represent
each tail (rest component) of the list. Each tail is a quasilist object that can mutate
between two forms: empty and non-empty. Since each tail is a mutable object sup-
porting the state pattern, a MutSeqVisitor can modify the state of any tail in the
process of traversing a list.

The QuasiList code uses inner classes to hide the classes implementing the state
of a QuasiList and to eliminate passing the QuasiList host as an extra parameter to
the execute(MutSeqVisitor v) methods in the Cons and Emtpy subclasses of List.
If the List class is moved outside of QuasiList, the QuasiList object containing a
given List object is not accessible to the List object.4

Nested Classes vs. Inner Classes

A nested class is a class whose definition appears inside the definition of another class,
as if it were a member of the other class. For example, if a program contains

class A {

class B {

// fields, methods of class B...

}

// fields, methods of class A...

}

then class B is a nested class of class A. Code outside of the methods of class A can
refer to class B by calling it A.B, using the same dot notation as for field and method

4Another alternative is add an owner field to the abstract class List that refers to the containing
QuasiList object but this approach complicates the form of the constructors for Cons and Empty,
which must take an additional argument to initialize the owner field.
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references. Within the methods of class A class B can be used without qualifying the
name. B could be hidden from code outside of class A by declaring it private, just
as with fields and methods.

A nested class like B is known as an inner class. An inner class has access to the
fields of an instance of its enclosing class. For this reason, an instance of B can only
be created in association with an instance of A, using the expression

/it instanceA.new A.B(...)

outside of A’s methods, where instanceA is an instance of A, and

new B(...)

inside of A’s methods. The new instance of B also knows about the enclosing instance
of A and can refer to it using the expression

A.this

We can think of an instance of an inner class as having two this references, one for
itself and one for its enclosing instance. An inner class may be nested within another
inner class, so an inner class can even have multiple levels of this references. Nesting
inner classes more deeply than one level is quite uncommon, however, and should
usually be avoided.

A nested class can be declared static, in which case it has reduced access to its
enclosing class. For example, if B were declared static above, it could no longer
access the instance variables of A, and there would be no associated instance A.this.
Static nested classes are known as nested top-level classes, because they are exactly
like classes declared outside any other class, except for the way they are named.
Instances of a static nested class are created using regular new, as in

new A.B(...)

We’ll see uses for both static nested classes and inner classes when we present the
full implementation of imperative lists.

Mutable Visitors

Quasi-functional lists are more flexible than lists as containers because the MutSeq
interface includes support for visitor operations that mutate the structure of a list.
The following visitor implements the operation of destructively inserting an element
at the rear of the sequence:

class InsertRear implements MutSeqVisitor {

/* given the embedded Object elt and a host with elements s[0], ... s[n],
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host.execute(this) destructively updates host so that host =
s[0],..., s[n],elt */

/* field */
private Object elt;

/* constructor */
InsertRear(Object e) { elt = e; }

Object forEmpty(MutSeq host) {
host.insert(elt);
return null; /* dummy return value; this operation has return type void!

}

Object forCons(MutSeq host) {
((MutSeq) host.rest()).execute(this);
return null; /* dummy return value; the return ‘‘type’’ is void!

}
}

class MutAppend implements MutSeqVisitor {

/* given the embedded MutSeq tail with elements t[0], ..., t[n] and a host
with elements s[0], ... s[n], host.execute(this) destructively
updates host so that host = s[0],..., s[n],tail[0],...tail[m] */

/* field */
private MutSeq tail;

/* constructor */
MutAppend(Object t) { tail = t; }

Object forEmpty(MutSeq host) {
host.set(tail);
return host; /* dummy return value; this operation has return type void!

}

Object forCons(MutSeq host) {
return ((MutSeq) host.rest()).execute(this);

}
}

The primary disadvantage of quasi-functional lists is that sharing list tails be-
tween two list objects can produce unexpected results when list objects are mutated.
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Mutating a shared list tail changes all of the list objects that share that tail! In the
programming literature, the sharing of mutable data objects is often called “aliasing”.

2.1.7 Extended Mutable Lists

Both of the preceding representations of mutable sequences—lists as containers and
quasi-functional lists—are inefficient at inserting elements at the rear of a sequence.
In each of these representations, the code for the operation must scan the entire
sequence to reach the end. The container representation is particularly inefficient
in this regard because the entire sequence must be reconstructed starting with a
singleton List containing the new element.

Mutable sequence implementations that efficiently support adding elements at
rear of the list and removing them from the front are important because this ac-
cess protocol, called a queue or a FIFO (first in, first out) list, frequently arises in
practice. Procedural formulations of linked lists discussed in traditional textbooks on
data structures provide constant-time access to the end of the list by maintaining a
“pointer” to the last node of the list. This strategy is conceptually simple but prone
to coding errors because the empty list state requires special treatment. Moreover,
the traditional procedural approach to representing lists exposes the concrete data
structures (nodes and links) used in the implementation. We can exploit the same
strategy in an object-oriented representation of lists that hides the concrete data
structures in private object fields—provided that we deal carefully with the poten-
tially troublesome “boundary” cases in the definition of list operations that involve
the empty list.

Formulating Traditional Linked Lists as Objects

The quasi-list representation of mutable sequences includes an extra level of object
nesting in the representation of list tails beyond what is present in the conventional
“singly-linked list” representations that are widely used in procedural programming.
A major disadvantage of this data representation is the extra memory required to
hold the extra object allocated for each node. The basic singly-linked list representa-
tion avoids this extra overhead; it relies on the exactly same data representation as
the “lists as containers” representation given in Section 2.1.5 with one critical modi-
fication: the first and rest fields of Cons objects are mutable. The following Java
code implements the MutSeq interface using conventional singly-linked lists rather
than quasi-lists.

class MutList implements MutSeq {

/* fields */
static final Empty EMPTY = new Empty(); // singleton empty list
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List value;

/* constructors */
MutList() { value = EMPTY; }
private MutList(List v) { value = v; }

/* visible methods */
Seq empty() { return new MutList(); }
Seq cons(Object newElt) { return new MutList(value.cons(newElt)); }

Object first() { return value.first(); }
// returns the element s[0]

Object rest() { return MutList(value.rest()); }
// returns a MutList containing elements s[1],...,s[n-1]

Object eltAt(int i) { return value.eltAt(i); }
// returns the element s[i]

boolean isEmpty() { return value.isEmpty(); }
// yields the number of elements in the sequence

void insert(Object o) { value = value.cons(o); }
// returns new MutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {
/* fields */
int index; // index of element to be updated

/* constructor */
UpdateEltAt(int i) { index = i; }

/* visit methods */
Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");
}
Object forCons(MutSeq host) {

if (index == 0) {
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host.setFirst(val);
return null;

}
else host.rest().execute(new UpdateEltAt(i-1));

}
value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }
// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }
// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {
// apply visitor v to this; value may CHANGE
if (value == EMPTY) then return v.forEmpty(this)
else return v.forCons(this);

}

private static abstract class List implements Seq {
abstract void setFirst(Object o};
abstract List cons(Object o};
abstract Object first();
abstract Seq rest();
abstract boolean isEmpty();

}
private class Empty extends List {

public void setFirst(Object o) {
throw new IllegalArgumentException(setFirst() applied to empty list");

}
public List cons(Object o} { new Cons(o,MutList.this); }
public Object first() {
throw new IllegalArgumentException("first() applied to empty list");

}
public Seq rest() {
throw new IllegalArgumentException("rest() applied to empty list");

}
public int length() { return 0; }

}
private static class Cons extends List { ... }

}
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Note that we have defined the List classes as inner classes to hide them from clients
of MutList. This feature distinguishes our representation of basic linked lists from
the traditional representation used in procedural languages. By embedding the Node

class hierarchy inside the definition of the MutList class, we have completely hidden
the fact that we are using a conventional linked list representation! To client code,
MutList is semantically indistinguishable from QuasiList!

What have we gained? First, the MutList class is a more efficient implementa-
tion of the MutSeq interface corresponding to quasi-lists because it allocates only one
object for each list node instead of two. Second, we can easily expand the MutList

class to include constant-time methods for adding and element to the end of a list
and appending to lists. The extended class maintains a reference to the subsequnce
containing last element The following ExtMutList class provides these new meth-
ods. Since the implementation relies on maintaining references to both the first and
last nodes of the list (value and last, the changes to MutList required to create
ExtMutList are non-trivial.

class ExtMutList implements ExtMutSeq {

/* fields */
static final Empty EMPTY = new Empty(); // singleton empty list

List value;

/* constructors */
MutList() { value = EMPTY; }
private MutList(List v) { value = v; }

/* visible methods */
Seq empty() { return new MutList(); }
Seq cons(Object newElt) { return new MutList(value.cons(newElt)); }

Object first() { return value.first(); }
// returns the element s[0]

Object rest() { return MutList(value.rest()); }
// returns a MutList containing elements s[1],...,s[n-1] where n=length(this)

Object eltAt(int i) { return value.eltAt(i); }
// returns the element s[i]

int length() { return value.length(); }
// yields the number of elements in the sequence
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void insert(Object o) { value = value.cons(o); }
// returns new MutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {
/* fields */
int index; // index of element to be updated

/* constructor */
UpdateEltAt(int i) { index = i; }

/* visit methods */
Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");
}
Object forCons(MutSeq host) {

if (index == 0) {
host.setFirst(val);
return null;

}
else host.rest().execute(new UpdateEltAt(i-1));

}
value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }
// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }
// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {
// apply visitor v to this; value may CHANGE
if (value == EMPTY) then return v.forEmpty(this)
else return v.forCons(this);

}

private static abstract class List implements Seq {
abstract void setFirst(Object o};
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abstract List cons(Object o};
abstract Object first();
abstract Seq rest();
abstract int length();

}
private class Empty extends List {

public void setFirst(Object o) {
throw new IllegalArgumentException(setFirst() applied to empty list");

}
public List cons(Object o} { new Cons(o,MutList.this); }
public Object first() {
throw new IllegalArgumentException("first() applied to empty list");

}
public Seq rest();

throw new IllegalArgumentException("rest() applied to empty list");
}
public int length() { return 0; }

}
private static class Cons extends List { ... }

}

interface ExtMutSeq extends MutSeq {
void insertRear(Object e);
void mutAppend(ExtMutSeq t);

}

class ExtMutList extends MutList implements ExtMutSeq {

/* fields */
Node value;
Node last;

/* relies on default constructor that calls super() */

/* visible methods */
Object first() { return value.first(); }
Seq rest() { return value.rest(); }

Object eltAt(int i) { return value.eltAt(i); }
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// returns the element s[i]

int length() { return value.length(); }
// yields the number of elements in the sequence

void insert(Object o) { value = value.cons(o); } /* last ?? */
// returns new ExtMutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {
/* fields */
int index; // index of element to be updated

/* constructor */
UpdateEltAt(int i) { index = i; }

/* visit methods */
Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");
}
Object forCons(MutSeq host) {

if (index == 0) {
host.setFirst(val);
return null;

}
else host.rest().execute(new UpdateEltAt(i-1));

}
value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }
// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }
// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {
// apply visitor v to this; value may CHANGE
if (value == EMPTY) then return v.forEmpty(this)
else return v.forCons(this);
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}

private static abstract class Node {
abstract void setFirst(Object o};
abstract void cons(Object o};
abstract Object first();
abstract Node next();
abstract Object eltAt(int i);
abstract int length();

}
private static class Empty extends Node { ... }
private static class Cons extends Node { ... }

}

Spaghetti References (akin to spaghetti code)

We strongly endorse the slogan ”pointers are the root of all evil.” In the 1970s,
structured programming was developed, which placed a discipline on the control flow
of programs. Up until that point, languages (and programmers) had been very liberal
in their use of the notorious goto statement or unconditional branch. Undisciplined
use of goto statements to programs whose control flow is almost impossible to trace by
hand (spaghetti code), and which are hence almost impossible to debug. In his Turing
Award Lecture in the early 1970s, C.A.R. Hoare asserted that multiple references to
the same data in a program can introduce a similar form of complexity if that data can
be mutated through those references. With multiple references to mutable data in a
program, we can stumble into serious trouble when one part of our program modifies
an object when another part is unaware of or unprepared for the modification.

Even in programs written and maintained by a single programmer, the unre-
stricted use of pointers is foolhardy and invites disaster. A programmer almost cer-
tainly does not remember the precise reasoning used involved in writing every section
of a significant application. As a result, mistakes are inevitable. Just as structured
programming placed constraints on the control flow in programs, we will place con-
straints on when and where mutable data can be changed. This is why we hide
mutable nodes inside a list container.

The Iterator Pattern

Before we present a complete implementation of singly-linked imperative lists, we
describe a new pattern which allows us to process lists similarly to arrays. The
pattern is called the Iterator pattern, and consists of two interfaces, an abstract list,
with methods for building and modifying lists

interface ItSeq extends {
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void insertFront(Object o);
void insertRear(Object o);
boolean isEmpty();
void remFront(); // remove the first element

}

and an abstract iterator, with methods for traversing a list and examining its contents

interface Iterator_I {
void front(); // move to first element
void next();
boolean atEnd(); // test whether past the last element
Object currentItem(); // contents of current element

}

The iterator’s atEnd method returns true if and only if the iterator has moved
past the last element of the list. When the iterator is in this state, the currentItem

method will throw an exception.
With such a list and such an iterator we could easily implement a queue, since we

can remove from the front and add at the back.
It would be nice if the list were more flexible however. For example, we may wish

to sort a list. We can already do this in a functional style, by building a new list while
using insertion sort, but since this is a mutable list we should ideally be able to sort
the list without copying the nodes, changing it from an unsorted list into a sorted
one. We can implement such a sort if we add two more methods to the Iterator I

implementation:

void insertBefore(Object o); // add new element before current
void remove(); // remove current

A given list may have more that one iterator active on it at one time, so the
remove and insertBefore methods must be used with some care.

The definition of an iterator class implementing the Iterator I involves two sub-
tle issues: First, for an iterator to remove the current element, it must have a reference
to the element immediately before the current element.
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Second, we can treat the empty list like any other list if we include a dummy node
which is always at the head of the list. This dummy node simplifes the implementation
of element removal when that element is the last element of the list. When the list is
empty, the last field refers to dummy node.

2.1.8 An Implementation

All of our implementation sketches of the last few sections now culminate in the
following real list implementation. Notice that we make use of both static nested and
inner classes in an effort to hide imperative details.

// (Singly-Linked) Mutable Lists

// The ListI interface includes a method newIterator that creates
// a new iterator for a list. The List Class implementing ListI
// hides the Iterator class implementing ListI. As a result,
// invoking newIterator is the only way to create new iterators.

interface ListI {

ListI newList();
int length();
void insertFront(Object o);
void insertRear(Object o);
void remFront();
boolean isEmpty();

Iterator_I newIterator();
}

interface ReadIterator_I {
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// interface for processing both mutable and immutable lists
void first();
void next();
boolean atEnd();
Object currentItem();

}

interface Iterator_I extends ReadIterator_I {

/* Destructive operations */
void insert(Object o);
// inserts before current item; when atEnd(), does insertRear(o)
void remove();

}

// Exception classes for Lists and Iterators

class ListException extends RuntimeException {
ListException(String s) { super(s); }

}

class IteratorException extends RuntimeException {
IteratorException(String s) { super(s); }

}

class List implements ListI {

// ** fields **
private Node head = new Node(); // allocate header node
private Node last = head;
private int length = 0;

// ** constructors **
// relying on default constructor

// ** toString() **
public String toString() {

Iterator_I i = new Iterator();
String result = "(";

for (i.first() ; ! i.atEnd(); i.next())
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result = result + " " + i.currentItem();
return result + " )";

}

// ** methods of ListI **
public ListI newList() { return new List(); }

public int length() { return length; }

public void insertFront(Object o) {
Node oldSucc = head.succ;
Node newNode = new Node(o,oldSucc);
head.succ = newNode;
if (last == head) last = newNode;
length++;

}

public void insertRear(Object o) {
Node newNode = new Node(o,null);
last.succ = newNode;
last = newNode;
length++;

}

public void remFront() {
if (isEmpty()) throw new
ListException("remFront() applied to EmptyList");

else {
Node newSucc = head.succ.succ;
head.succ = newSucc;
if (newSucc == null) last = head;
length--;

}
}

public boolean isEmpty() { return head == last; }

public Iterator_I newIterator() {
return new Iterator();

}

// ** hidden classes Node and Iterator **/
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private static class Node {

/* fields */
Object item;
Node succ;

/* constructors */
Node(Object i, Node s) {
item = i;
succ = s;

}

Node() { // allocate header
item = null;
succ = null;

}

// fields are accessed directly by code in List class
}

private class Iterator implements Iterator_I {

// NOTE: Iterator points to predecessor of current item.
// Hence, current item is pred.succ

/* fields */
Node pred;

/* Constructors */
Iterator() {
pred = head;

}

/* methods in Iterator_I interface */
public void first() {
// reposition cursor to refer to first item (if one exists)
pred = head;

}

public void next() {
// advance cursor
if (atEnd()) throw new

IteratorException("No next element in Iteration");
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pred = pred.succ;
}

public Object currentItem() {
// returns current item
if (atEnd()) throw new

IteratorException("No current element in " + List.this);
return pred.succ.item;

}

public boolean atEnd() { return pred == last; }
// returns true iff cursor points to imaginary element beyond last

public void insert(Object o) {

// pre: current is either a list element or an imaginary
// element just beyond the last element
// post: Node containing o is inserted before current item,
// current is unchanged (pred is changed, last may be)

Node oldSucc = pred.succ;
Node newNode = new Node(o, oldSucc); // allocate new node
pred.succ = newNode; // insert it
pred = newNode; // update current
if (oldSucc == null) last = newNode; // update last if needed
length++;

}

public void remove() {

// pre: pred != last (current is valid)
// post: pred.succ becomes pred.succ.succ

if (atEnd()) // no element available to remove!
throw new IteratorException(
"Iterator.remove() applied at end of List");

Node deadNode = pred.succ;
pred.succ = deadNode.succ;
if (last == deadNode) last = pred;
length--;

}
}

}
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BiLists and Their Iterators

The lists of the last few sections can be efficiently scanned in only one direction,
starting at the front and proceeding element by element to the end. We would now
like to develop a more general form of list that supports both forward and backward
traversal. The new list implementation will use doubly-linked lists, and we will call
the new lists BiLists and their iterators BiIterators.

As with our previous lists, we define a pair of interfaces, BiListI for lists, and
BiIterator I for iterators. Since BiLists and BiIterators will support all the
same operations as Lists and Iterators, we will make these interfaces subinterfaces
of BiListI and BiIterator I.

BiListI supports an additional operation for removing nodes at the rear of the
list, and provides an additional factory method for producing BiIterator Is.

interface BiListI extends ListI {
void remRear();
BiIterator_I newBiIterator();

}

BiIterator I supports backward traversal of lists, and so requires methods for
moving to the end of a list, moving back an element, and a test for whether the
iterator is at the front of the list.

interface BiIterator_I extends Iterator_I {
void last();
void prev();
boolean atBeginning();

}

Since a BiIterator I is also necessarily an Iterator I, a BiIterator I instance can
be substituted for an Iterator I instance. Thus the newIterator and newBiIterator

methods can share the same implementation.
An implementation of BiList and BiIterator is given below. In contrast to the

List implementation of the last section, all the classes are top-level, and so imperative
operations are not as well hidden. The BiIterator must now have a field to record
the BiList it operates on, and this must be initialized at construction time. As an
exercise, try converting the implementation so it uses nested and inner classes as in
the List case.

The underlying list structure is doubly-linked and circular. The dummy node
acts as both a marker for the beginning and the end of the list. Since nodes have
pointers to both next and previous nodes, the insertion and deletion methods are a
little more tricky and require more elaborate pointer juggling. When implementing
doubly-linked lists yourself, it helps to draw diagrams that show what points to what
at each stage of one of these operations.



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 136

In the following code defining the interface BiListI class BiList the interfaces
ListI, ReadIterator, and Iterator I and classes ListException and IteratorException

are identical to those in the code for the (singly-linked) class MutList.

interface BiListI extends ListI {

// Extra operation required for bi-directional traversal
// Standard implementation uses double linking

void remRear();
BiIterator_I newBiIterator();
// duplicate of newIterator() with more precise return type

}

interface BiIterator_I extends Iterator_I {

// extended iterator for BiListI

void last();
void prev();

}

class BiList implements BiListI {

// ** fields **
Node head = new Node(); // allocate circularly linked header node
int length = 0;

// ** constructors **
// relying on default constructor

// ** toString
public String toString() {

BiIterator_I i = new BiIterator(this);
String result = "(";

for (i.first() ; ! i.atEnd(); i.next())
result = result + " " + i.currentItem();

return result + " )";
}

// ** methods in Interface BiListI

public ListI newList() { return new BiList(); }
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public BiListI newBiList() { return new BiList(); }

public int length() { return length; }

public void insertFront(Object o) {
Node oldSucc = head.succ;
Node newNode = new Node(o,head,oldSucc); // allocate new Node
// insert new Node
head.succ = newNode;
oldSucc.pred = newNode;
length++;

}

public void insertRear(Object o) {
Node oldPred = head.pred;
Node newNode = new Node(o,oldPred,head); // allocate new Node
// insert new Node
head.pred = newNode;
oldPred.succ = newNode;
length++;

}

public void remFront() {
if (isEmpty())
throw new ListException("remFront() applied to EmptyList");

else {
Node newSucc = head.succ.succ;
head.succ = newSucc;
newSucc.pred = head;
length--;

}
}

public void remRear() {
if (isEmpty())
throw new ListException("remRear() applied to EmptyList");

else {
Node newPred = head.pred.pred;
head.pred = newPred;
newPred.succ = head;
length--;

}
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}

public boolean isEmpty() { return head == head.succ; }

public Iterator_I newIterator() {
// weaker typing for BiIterator when viewed as Iterator
return new BiIterator(this);

}

public BiIterator_I newBiIterator() {
return new BiIterator(this);

}
}

// Implementation classes (not hidden!)

class Node {
// ** fields **
Object item;
Node pred,succ;

// ** constructors
Node(Object i, Node p, Node s) {

item = i;
pred = p;
succ = s;

}

Node() { // allocate header
item = null;
pred = this;
succ = this;

}
}

class BiIterator implements BiIterator_I {

// ** fields **
BiList listThis;
Node current;

// ** constructors **
BiIterator(BiList l) {



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 139

listThis = l; // associated List instance
current = listThis.head.succ; // current is first item (if one exists)

}

// ** methods in BiIterator interface **
public void first() {

current = listThis.head.succ; // current is first item (if one exists)
}

public void last() {
current = listThis.head.pred; // current is last item (if one exists)

}

public void next() {
current = current.succ; // wraps around end

}

public void prev() {
current = current.pred; // wraps around end

}

public Object currentItem() {
if (current == listThis.head) throw
new IteratorException("No current element in " + listThis);

return current.item;
}

public boolean atEnd() { return current == listThis.head; }

public void insert(Object o) {

// pre: true
// post: Node containing o is inserted before current item,
// current is unchanged

Node oldPred = current.pred;
Node newNode = new Node(o, oldPred, current); // allocate new node
current.pred = newNode; // insert it
oldPred.succ = newNode;
listThis.length++;

}

public void remove() {
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// pre: current is valid
// post: current becomes current.succ

if (current == listThis.head) throw
new IteratorException(

"BiIterator.remove() applied at end of BiList " + listThis);
Node cPred = current.pred;
Node cSucc = current.succ;
cPred.succ = cSucc;
cSucc.pred = cPred;
current = cSucc;
listThis.length--;

}
}

2.1.9 Alternate Representations of Lists

So far we have focused on linked lists, but these are not the only possible implemen-
tations.

Arrays

Here is a sketch of how we might implement the BiList interface using arrays.

1. newList: allocate a new array and initialize the elements in order (O(n))

2. isEmpty: trivial if along with the array we maintain a count of how many
elements are actually in use (O(1))

3. insertFront: expensive. If the front is already occupied, we have to shuffle all
the contents one place further down the array (O(n);

4. insertRear: cheap (O(1));

5. remRear: cheap (O(1));

6. newIterator: we don’t present an implementation, but the details are not
hard. The iterator need only keep the index of the current element. But note
that inserting or deleting from the middle now requires shuffling elements (O(n)
average case).

If we run out of room we can resize the array used to store the list elements. If
we double the size of the array at each resizing, then the average number of times an
element is copied due to resizing is approximately 1. To prove this, let the initial size
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of the array be I, and suppose that the final size of the array is N, and there were k
resizes. Then

N = I · 2k

and we observe that

1. the first I elements move k times;

2. the next I elements move k-1 times;

3. the next 2I elements move k-2 times;

4. ...

5. the last N/2 = 2k−1 · I elements move 0 = k − k times.

Using some summation facts we can show that the total number of array element
copy operations is exactly N − I. Thus the average number of copy operations per
element in the final array is (N − I)/N which is always less than 1, and approaches 1
in the limit as N gets much larger than I (i.e. as the number of resizings gets large).
We say that the amortized cost of copying array elements is (bounded by a) constant.
The strategy of doubling the size of the array on each resize operation appears to be
an efficient one.

Exercise: Suppose that instead of doubling the array size, we increased it by some
constant amount. That is, after k resizings, the size of the array is I + k · J for some
constant J . What would the amortized cost of element copying be then?

2.1.10 Hybrid Representations of Sequences

For some application such as a text editor the best representation of sequences may be
a hybrid of linked and sequential allocation, sometimes called a rope implementation.
Such a hybrid links together sequentially allocated blocks of elements (arrays). If the
size of blocks is bounded by a constant, then the asymptotic complexity of sequence
operations in the hybrid implementation is identical to the corresponding singly or
doubly linked list implementation. But the leading constant in the polynomial ap-
proximating the running time may be much lower.
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Graphical User Interfaces

Nearly all contemporary software applications have a graphical user interface. A well-
designed graphical interface is far more expressive and easier to use than a text based
interface. In this section, we will show how to write simple graphical user interfaces
in Java.

3.1 GUI Programming

Graphical user interface programming is inherently more complex than ordinary ap-
plications programming because the graphical interface computation is driven by a
stream of graphical input actions. All of the input actions performed by a program
user including moving the mouse, clicking a mouse button, and typing a keystroke
are processed by code in the computer operating system. This code determines when
an input action of potential interest to the application occurs. Such an input ac-
tion is called an “event”. Typically mouse movement alone does not constitute an
event; the operating system updates the position of the cursor on the screen as the
mouse is moved. When a mouse button is clicked or a key is typed, the operating
system interrupts the application program and informs it that the specified event has
occurred. The Java virtual machine includes an event monitor that processes these
interruptions. This event processing code filters input events just as the operating
system code filters inputs. For some events such as typing a key (other than return),
the Java event monitor simply echoes the character on the screen in the appropriate
place. For other events such as a mouse click on a button, the Java event monitor
generates a program Event object that it places on a queue of pending Events for
processing by the running Java program.

Every Java program that creates graphical components has an extra thread of
execution that processes the program Event objects in the event queue. For each
program Event object, the thread calls the “listener” method that has been registered
by the Java program for handling this kind of program event.

142
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3.1.1 Model-View-controller Pattern

A well-organized graphical application has three components:

• a model consisting of the application with no external interface;

• a view consisting of one or more graphical frames that interact with the user
and the application; and

• a controller consisting of the “main” program that constructs the model and
the view and links them together.

A model is a “raw” program module with a programming interface consisting a col-
lection of publicly visible methods or procedures. In Java, the application is typically
a single object (containing references to many other objects) and the programming
interface is the collection of methods supported by that object.

When a program with a graphical interface starts, the controller

1. creates the model (application),

2. creates the view consisting of one or more graphical frames and attaches com-
mands to the graphical input controls (buttons, text boxes, etc.) of the view,

3. activates the graphical components in the view, and

4. terminates.

Of course, program execution continues after the controller terminates because the
extra thread of execution that processes program events is still running. After the
controller terminates, all program execution is triggered by user input actions.

The commands attached to the graphical input controls are operations on the
model implemented using the model’s programming interface. Recall the command
pattern from Section 1.9. In Java, each of the graphical input controls in the graph-
ics (AWT/Swing) library has an associated command interface that the installed
commands implement. In the Java graphics library, these commands are called “lis-
teners” because the are dormant until a graphical input event occurs (e.g., a button
is “pressed”). In the programming literature, these commands are often called “call-
backs” because they call methods “back” in the model which is logically disjoint from
the code running in the view.

To explain how to write programs using the model-view-controller pattern, we
will explore a simple example, namely a click-counter application that maintains and
displays a simple integer counter ranging from 0 to 999. The graphical display will
show the current value of the counter and include three buttons: an increment button,
a decrement button, and reset button.

We will start with the problem of writing the view components of the application.
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3.1.2 How to Write a View

Most view components have a small number of distinct states that determine how the
view is configured and how it will respond to the next program event. As a result,
view component programs typically consist of:

• a constructor than initializes the view,

• a registration method for each program event source (e.g., a button) that takes
a callback (command) argument and registers this callback as the listener for
this event source, and

• a setter method for each distinct view state that sets the fields of the view to
the appropriate values.

The controller uses the registration methods to attach callbacks to program event
sources in the view. The callbacks use the setter methods to change the state of the
view in response to program events.

For our click counter example, the view will have the following format:

which we decompose into three possible states:

1. the Min state where the DEC and 0 buttons are deactivated because the counter
has its minimum value of 0.

2. the Counting state where are three buttons are activated, and
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3. the Max state where the INC button is deactivated because the counter has
reached its maximum value.

The listener must take into account the state of the model to update view.

Warning Most introductory books are written by authors who do not understand
the model-view-controller pattern and the proper use of callbacks. Callbacks are not
supported in C or C++ because there is no concept of procedures as data objects
(simply passing a pointer to a procedure does not work!). As a result, textbook
authors with a C/C++ background are accustomed to using ugly alternatives to call-
backs which they continue to use in the context of Java. A common and particularly
onerous abuse of the Java callback interface is implementing the requisite listener
interfaces by methods in the main viewer class, which is typically a frame or an ap-
plet. This approach limits each event category to a single callback, e.g, one callback
method for all buttons which is coded in the main viewer class.

This approach has four serious disadvantages.

• First, to determine which component produced a given event, the viewer class
must uniquely label each event source (or maintain a table of event references).

• Second, when the listener receives an event, it must classify the event source
using a sequence of tests or look it up in a table to determine what block of
code should be used to process the event.

• Third, the code to process the event embedded in the view relies on the interface
provided by the application, corrupting the model-view-controller decomposi-
tion.

• Fourth, if another graphical component in the same category is added to the
view (e.g, a new button) then the code for the callback method for that event
category must be modified.

Since the command pattern (procedures as data objects) completely eliminates this
mess, the “view class as listener” approach to event processing is indefensible. Never-
theless, it is widely taught even by some reputed “experts” on Java programming. In
fact, I am familiar with only one popular Java book that teaches good programming
practice in conjunction with GUI programming, namely Thinking in Java by Bruce
Eckel.

Coding the View Class The following code defines a view class that supports the
schematic display given above:
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import java.awt.*;
import java.applet.*;
import java.awt.event.*;
import javax.swing.*;

class ClickCounterView {

// ** fields **
private JButton incButton;
private JButton resetButton;
private JButton decButton;
private JLabel valueDisplay;

// ** constructors **
public ClickCounterView(JApplet itsApplet) {

JPanel controlPanel = new JPanel();

itsApplet.getContentPane().setLayout(new BorderLayout());
valueDisplay = new JLabel("000", JLabel.CENTER);

itsApplet.getContentPane().add(valueDisplay, "Center");

incButton = new JButton("+");
resetButton = new JButton("0");
decButton = new JButton("-");

controlPanel.add(incButton);
controlPanel.add(resetButton);
controlPanel.add(decButton);
itsApplet.getContentPane().add(controlPanel, "South");

}

// ** methods **
public void setValueDisplay(String setTo) {

valueDisplay.setText(setTo);
}

public void addIncListener(ActionListener a) {
incButton.addActionListener(a);

}

public void addDecListener(ActionListener a) {
decButton.addActionListener(a);
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}

public void addResetListener(ActionListener a) {
resetButton.addActionListener(a);

}

public void setMinimumState() {
incButton.setEnabled(true);
resetButton.setEnabled(false);
decButton.setEnabled(false);

}

public void setCountingState() {
incButton.setEnabled(true);
resetButton.setEnabled(true);
decButton.setEnabled(true);

}

public void setMaximumState() {
incButton.setEnabled(false);
resetButton.setEnabled(true);
decButton.setEnabled(true);

}
}

The structure of this program is very simple. Most of the length is due to Java’s
wordy syntax and long variable names. What does it do?

The Java AWT/Swing library includes a large number of classes for defining graph-
ical components that can be displayed on the screen. The AWT library relies on the
window manager of the underlying operating system to implement common graphical
components like windows, menus, and buttons. The Swing extension to the AWT
library provides “pure Java” equivalents of these graphical elements, eliminating the
vagaries in graphical style among window systems. For every graphical component
class C in the AWT library, the Swing extension includes an equivalent “pure Java”
component class JC. For example, the AWT library includes a component class Button
to represent a button in a graphical window. Hence, the Swing extension includes the
corresponding class JButton. With a few exceptions, each Swing component class
can be used in place of the corresponding AWT class.

All of the component classes in AWT/Swing are all descendants of the AWT ab-
stract class Component (surprise!). The ClickCounterView class mentions three of
these component classes, namely JPanel, JButton, and JLabel which are all sub-
classes of the Swing abstract class JComponent (which is a subclass of Component).
A JPanel object is simply a rectangular region that can be incorporated in a graph-
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ical container (such as the JFrame class in the Swing library) which is subsequently
displayed on the screen. A panel typically contains other graphical elements (e.g.
buttons, drawing canvases, text, pictures) which are displayed as part of the panel.
(A blank panel is not very interesting!) A JButton is a graphical button and a JLabel

is a single line of text that can be used as a graphical component.
In AWT/Swing library, graphical components that can contain other graphical

components are called containers and belong to type Container. Within a container,
the layout of the graphical components inside it is determined by a layout manager,
a Java object of type LayoutManager. One of the important tasks in programming
a user interface is determining which layout manager and combination of parameter
values to use. A good layout policy will produce an attractive logical layout for a
variety of different frame shapes and sizes.

The layout manager BorderLayout used in ClickCounterView uses compass points
to constrain the relative position of graphical components. The four compass points,
"North", "East","South", and "West" plus the "Center" position are supported
by the layout manager as directives when graphical components are installed within
the panel that it manages.

In the program text above, the ClickCounterView object constructor creates pan-
els within the frame provided by the JApplet object that is passed to it. An applet
is a “top level” container; the browser that is executing the applet provides it with a
blank area of the screen in which it can paint its various graphical elements. The con-
structor for ClickCounterView creates a JLabel displayValue text line to hold the
current click count and a JPanel controlPanel containing three buttons, incButton,
resetButton, and decButton with adorning String labels +, 0, and -, respectively.
The displayValue is placed in the center of the Applet and the three buttons are
placed in the controlPanel using the default layout manager FlowLayout. This lay-
out manager places graphical components in rows from left-to-right just like a text
editor places characters when you type text into a buffer.

The ClickCounterView class defines seven public methods to access and update
its components:

• the setValueDisplay method update the valueDisplay to the specified String;

• the methods addIncListener, addDecListener, and addResetListener at-
tach their command arguments to the buttons incButton, resetButton, and
decButton, respectively; and

• the methods setMinimumState, setCountingState, and setMaximumState which
enable and disable the buttons appropriately for each of the three states de-
scribed above.
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3.1.3 How to Write a Simple Model

From the perspective of GUI design, the critical issue in developing a model is defining
the interface for manipulating the model. This interface should be as transparent as
possible, without making a commitment to a particular user interface.

In our click counter example program, the model class is utterly trivial. In accor-
dance with the model-view-controller pattern, it is does not presume any particular
user interface. The only feature of the counter targeted at supporting a user inter-
face is the toString method which pads the output String with leading zeroes to
produce the specified display width of 3 digits.

class ClickCounter {

// ** fields **
private static final int MAXIMUM = 999;
private static final int MINIMUM = 0;
private static final int STRING_WIDTH = 3;
private static int count = MINIMUM;

// ** constructor
public ClickCounter() {}

// ** methods
public boolean isAtMinimum() { return count == MINIMUM; }

public boolean isAtMaximum() { return count == MAXIMUM; }

public int inc() {
if (! this.isAtMaximum()) count++;
return count;

}

public int dec() {
if (! this.isAtMinimum()) count--;
return count;

}

public void reset() { count = MINIMUM; }

public int getCount() { return count; }

// ** toString() **
public String toString() {
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StringBuffer buffer =
new StringBuffer(Integer.toString(count));

while (buffer.length() < STRING_WIDTH) buffer.insert(0,0);
return buffer.toString();

}
}

3.1.4 How to Write a Controller

From a programming perspective, the controller is the most interesting part of this
example. It glues together the model and view using callbacks and then terminates.
Of course, whenever the view receives an event, it invokes callbacks, code defined
in the controller, to process them. The controller’s callback code performs whatever
updates are required to the model an to the view.

public class ClickCounterControl extends JApplet {

// ** fields **
private ClickCounter counter;
private ClickCounterView view;

// ** constructors **
// relying on default constructor

// ** methods **
// relying on inheritance from JApplet

public void init() {
counter = new ClickCounter();
view = new ClickCounterView(this);
view.setMinimumState();
view.setValueDisplay(counter.toString());

view.addIncListener(new ActionListener(){
public void actionPerformed(ActionEvent event) {

if (counter.isAtMaximum()) return;
if (counter.isAtMinimum()) view.setCountingState();
counter.inc();
view.setValueDisplay(counter.toString());
if (counter.isAtMaximum()) view.setMaximumState();

}
});
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view.addDecListener(new ActionListener(){
public void actionPerformed(ActionEvent event) {

if (counter.isAtMinimum()) return;
if (counter.isAtMaximum()) view.setCountingState();
counter.dec();
view.setValueDisplay(counter.toString());
if (counter.isAtMinimum()) view.setMinimumState();

}
});

view.addResetListener(new ActionListener(){
public void actionPerformed(ActionEvent event) {

counter.reset();
view.setMinimumState();
view.setValueDisplay(counter.toString());

}
});

}
}

3.2 What is Concurrent Programming?

Until now, we have been exclusively concerned with sequential programs that execute
a single stream of operations. Even the GUI programming in the previous section
avoided concurrent execution by terminating the controller as soon as it finished set-
ting up the model and view. Concurrent computation makes programming much more
complex. In this section, we will explore the extra problems posed by concurrency
and outline some strategies for managing them.

In a concurrent program, several streams of operations may execute concurrently.
Each stream of operations executes as it would in a sequential program except for
the fact that streams can communicate and interfere with one another. Each such
sequence of instructions is called a thread. For this reason, sequential programs are
often called single-threaded programs. When a multi-threaded program executes, the
operations in its various threads are interleaved in an unpredictable order subject to
the constraints imposed by explicit synchronization operations that may be embedded
in the code. The operations for each stream are strictly ordered, but the interleaving
of operations from a collection of streams is undetermined and depends on the vagaries
of a particular execution of the program. One stream may run very fast while another
does not run at all. In the absence of fairness guarantees (discussed below), a given
thread can starve unless it is the only “runnable” thread.
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A thread is runnable unless it executes a special operation requiring synchro-
nization that waits until a particular condition occurs. If more than one thread is
runnable, all but one thread may starve (make no progress because none of its oper-
ations are being executed) unless the thread system makes a fairness guarantee. A
fairness guarantee states that the next operation in a runnable thread eventually will
execute. The Java language specification currently makes no fairness guarantees but
most Java Virtual Machines guarantee fairness.

Threads can communicate with each other in a variety of ways that we will discuss
in detail later in this section. The Java programming language relies primarily on
shared variables to support communication between processes, but it also supports
an explicit signaling mechanism.

In general, writing concurrent programs is extremely difficult because the mul-
tiplicity of possible interleavings of operations among threads means that program
execution is non-deterministic. For this reason, program bugs may be difficult to
reproduce. Furthermore, the complexity introduced by multiple threads and their
potential interactions makes programs much more difficult to analyze and reason
about. Fortunately, many concurrent programs including most GUI applications fol-
low stylized design patterns that control the underlying complexity.

To demonstrate some of the subtle problems that arise with this sort of program-
ming, consider the following example. We have two threads, A and B, that both have
access to a variable ct. Suppose that, initially, ct is 0, but there are places in both
A and B where ct is incremented.

A B
... ...
ct++; ct++;

To increment a variable x, (i) the value v of x must be fetched from memory,
(ii) a new value v’ based on v, and (iii) v’ must be stored in the memory location
allocated to variable x. These are three separate actions, and there is no guarantee
that no other thread will access the variable until all three are done. So it’s possible,
for instance, that the order of operations from these two threads occurs as follows:

A fetches ct = 0
B fetches ct = 0
A computes the value ct++ = 1
A stores the value 1 in ct
B computes new value ct++ = 1
B stores the value 1 in ct

With this order of the operations, the final value for ct is 1. But in other possible
orderings (e.g., if A performs all of its actions first), the final value would be 2.

A simple strategy for preventing this form of interference (often called a race con-
dition) is to make the entire access/modify/store cycle for updating shared variables
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atomic, despite the fact that the cycle is performed using several machine instructions.
Atomic operations appear to execute as a single machine instruction because all other
threads are forced to pause executing while the atomic operation executes. As a re-
sult, it is impossible for another thread to observe the value of the updated variables
while the operation is in progress. A block of code that requires atomic execution
is called a critical section. Some programming languages that support concurrency
include begin/end brackets for enclosing critical sections.

The critical section mechanism works well in the context of running multi-threaded
programs on a computer with a single processor (a uniprocessor) since it reduces to
ensuring that a critical section is not interruptible (permitting another thread to run).
But it is clumsy and inefficient on a multiprocessor because it forces all processors but
one to stop execution for the duration of a critical section. (Existing virtual machines
treat new operations that force garbage collection as critical sections.

A much better mechanism for preventing interference in concurrent programs that
may be executed on multiprocessors is locking data objects. When a data object is
locked by a thread, no other thread can access or modify the data object until the
locking thread releases it. In essence, locking relaxes the concept of atomic execution
so that it is relative to a particular object. Threads can continue executing until they
try to access a locked object.

Java relies on object locking to prevent interference. An object can be locked for
the duration of a method invocation simply by prefixing the method declaration with
the work synchronized. For instance, to define a synchronized increment method, we
would write:

synchronized void inc() { ct++; }

We can also declare static methods to be synchronized, which locks the class object
(which contain all of the static variables of the class) rather than an instance object.

An unusual feature of Java’s lock mechanism is the fact that locking an object
only inhibits the execution of operations that are declared as synchronized. Methods
that are not declared as synchronized will be executed even when an object is locked!
There is a strong argument for this capability: it supports the definition of classes
that partition operations in two groups: those that require synchronization and those
that do not. But it also invites subtle synchronization bugs if the synchronized

modifier is inadvertently omitted from one method definition.
Of course, concurrency only arises in Java when a program uses more than one

thread. To support the explicit creation of new threads, Java includes a built-in
abstract class Thread, that has an abstract method run(). We can make a new
thread by (i) defining a class extending Thread that defines the method run(), (ii)
constructing a new instance of this class, and (iii) calling the start() method on this
new instance. The start() method actually creates a new thread corresponding to
the receiver object (a Thread) and invokes the run() method of that thread, much as
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the main() method is invoked in the root class when you run a Java Virtual Machine.
For example,

class Foo extends Thread {
// must have
public void run() {
...
}

}

When a constructor for Foo is called, all of computation for the object allocation and
constructor invocation is performed in the current thread; a new thread is not created
until the start() method is invoked for a Thread() object. To create and start a
new Foo thread, the current thread can simply execute the code

Thread t = new Foo();
t.start();

Alternatively, the current thread can execute the run() method of the Thread object
t simply by performing the operation

t.run()

instead of

t.start()

Assume that a new Foo thread t has been created and started. At some point
in the execution of the original thread (now running concurrently with thread t) can
wait for thread t to terminate by executing the method invocation:

t.join();
// waits for the thread object to terminate.

So we can view the relationship of the two threads of control as follows:

main
|

t.start
|\
| \
| |
| /
|/

t.join
|
|
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Synchronizing multiple threads does incur some overhead. For example, consider the
following Java code:

class PCount extends Thread {

// ** fields ***
static int sharedCtr = 0;
static final int cntPerIteration = 100000;
static final int noOfIterations = 10;

int id;

// ** constructors **
PCount(int i) { id = i; }

// ** methods **
void inc() {

sharedCtr++;
}
public void run() {

for (int i = 0; i < cntPerIteration; i++) inc();
System.out.println("Iteration #" + id +
" has completed; sharedCtr = " + sharedCtr);

}

public static void main(String[] args)
throws InterruptedException {

Thread[] tPool = new Thread[noOfIterations];
for (int j = 0; j < noOfIterations; j++) {
tPool[j] = new PCount(j);

}
for (int j = 0; j < noOfIterations; j++) {
tPool[j].start();

}
for (int j = 0; j < noOfIterations; j++) {
tPool[j].join();

}
System.out.println("Computation complete. sharedCtr = "
+ sharedCtr);

}
}

In each iteration, main creates a new thread. Afterwards, all are synchronized
and a final value is determined.
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The counter is not locked in this example, and so updates may be lost because
of the problems described above. The likelihood with which update losses may occur
varies depending on the number of threads. For example, in a test that I ran a few
months ago

• for 1 million iterations, the program 65

• for 100,000 iterations, the program lost none.

Apparently, even with 100,000 threads, each iteration occurred within a single time
slice.

Synchronizing the threads fixes the problem of lost updates, but it really slows
the program down; even for 100,000 iterations.

In modern event-handling models such as those in Java and DrScheme, we have
a single event handler that executes events serially. This protocol saves the overhead
of synchronization and eliminates potential deadlocks (which we will discuss later).

Synchronized methods and statements

We’ve already discussed synchronized methods above. We can likewise declare syn-
chronized blocks of statements using the following syntax:

synchronized(expr) {
...

}

where ¡tt¿expr¡/tt¿ must evaluate to a reference type (i.e. for most purposes, an object
reference). The code between the braces needn’t have any connection to ¡tt¿expr¡/tt¿,
although this would be perverse in most situations.

For an example, consider implementing a bounded buffer protocol. Bounded
buffers are used in Unix to allow interprocess communication via ¡em¿pipes¡/em¿.
When the output of one process is piped to the input of another, a bounded buffer is
set up between the processes. The first process writes into the buffer, and the second
process reads from it.
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When the second process attempts to read data but there is none for it to read,
it must wait until data is available. There are two general schemes that can be used
to implement this waiting:

• busy-waiting: the reader process executes a loop in which it tests whether there
is any data waiting for it. This approach works but is undesirable because the
reader is allocated CPU time just to test if it can do useful computation;

• blocking: the operating system provides the routines for reading from and writ-
ing to the buffer. When the reader process attempts to read from an empty
buffer, it is ¡em¿blocked¡/em¿. The operating system marks the reader as unable
to run until data is available in the buffer, and removes it from the collection of
currently runnable processes. When the writer process writes data, the system
”wakes up” the reader process and makes it one of the runnable processes again.
In this way, very little CPU time is expended on coordinating the writer and
reader processes.

Naturally, Unix uses the second approach. Note that a symmetric situation occurs
when the writer process attempts to write to the buffer and it is full: the writer is
blocked pending the availability of space in the buffer. The writer may be reawak-
ened when the reader reads some data and the routine for reading from the buffer
determines that there is available space for more data to be written.

We can program a Java thread so that it busy waits on a locked object, but this
is almost always a bad programming practice. Fortunately, Java provides a facility
that enables us to avoid busy-waiting. There are two primitives,

• wait()

• notify()

which can be used inside synchronized methods and blocks. wait() puts the calling
thread to sleep on a queue of threads that are waiting for some change in the status
of a locked object. The thread can only be awakened if some other running thread
calls notify() on the same locked object. When notify() is invoked for the locked
object, a check is done to see whether any change has been made to it, and then some
waiting thread from the associated queue is allowed to run. (Notify arbitrarily picks
one thread).

The awakened process will, if prudently written, check whether the condition it
is waiting for actually holds. If it does, the thread proceeds, and otherwise it should
suspend itself again with another call to wait(). Usually, this is implemented in a
loop. This may look a bit like busy-waiting, but because wait() suspends the calling
thread until something of interest happens, most of the time the thread is idle.

There is also a notifyAll() method, which works just like notify() except that
all waiting threads are allowed to run.
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3.2.1 Deadlock

In the preceding subsection, we showed how object locking can be used to prevent
interference. Unfortunately, locking is not a panacea. The excessive use of locking
can severely degrade system performance or, even worse, lock up the system so that
all computational progress halts until the program is terminated. The essence of
concurrent programming is organizing computations so that neither interference or
deadlock can occur.

To illustrate deadlock, let us consider a classical problem called The Dining
Philosophers in the theory of concurrent programming. It is unrealistic and fanci-
ful, but the synchronization behavior that it models can happen in real systems.

A collection of N philosophers sits at a round table, where N > 1. N forks are
placed on the table, one between each pair of adjacent philosophers. No philosopher
can eat unless he has two forks and he can only use the two forks separating him
from his two neighbors. Obviously, adjacent philosophers cannot eat at the same
time. Each philosopher alternately eats and sleeps, waiting when necessary for the
requisite forks before eating.

Our task is to write code simulating the dining philosophers so that no philosopher
starves. An obvious protocol that each philosopher might follow is:

while (true) {
grab left fork;
grab right fork;
eat;
release left fork;
release right fork
sleep;

}

Now assume that actions of the philosophers are perfectly interleaved: the first
philosopher grabs his left fork, then the second philosopher grabs his left fork, and
so on until the Nth philosopher grabs his left fork. Then the first philosopher tries
to grab his right fork, the second philosopher tries to grab his right fork, and so on.
They all have to wait because no right fork is available and they all starve.

Theoretical computer scientists have proven that there is no deterministic uniform
solution to this problem. (By uniform, we mean that every philosopher executes
exactly the same code with no access to identifying state information such as the
name of the “current” philosopher.) But many non-uniform solutions exist. For
example, we could number the philosophers around the table from 0 to N . Even
numbered philosophers ask for the left fork first, odd numbered ones ask for the right
fork first.
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Another common solution to this sort of deadlock is to order the resources (in this
case forks) and force the processes (philosophers) to grab forks in ascending order.
This solution is very general and is widely used in practice.

Consider the case where we have three philosophers: P1, P2, P3 and three forks
F1, F2, F3 where P1 sits between F1 and F2, P2 sits between F2 and F3, and P3 sits
between F3 and F1. We can order the forks in the obvious ascending order F1, F2,
F3.

Now, no matter what, all the philosophers will be able to eat because the linear
ordering prevents cycles in the “is waiting for” relation among philosophers. (Finger
exercise: prove it!) For instance, if P0 gets F0, and P1 gets F1, P2 must wait until
F0 is free. So P1 will get F2 (since there will be no contention), and finish eating.
This will release F1 and F2, allowing P0 to get F1 and finish eating. Finally, this will
release F0, allowing P2 to get F0 and F2 (since there will be no further contention)
and finish eating.


