Elements of
Object-Oriented Program Design

Robert “Corky” Cartwright
Copyright 1999-2009

Please send corrections and comments to cork@rice.edu

January 10, 2010

Contents

1 From Scheme to Java 4
1.1 Introduction 4
1.1.1 What is an Object? 4
1.1.2 Classes: Templates for Creating Objects 9
1.1.3 Defining Instance Methods 11
1.1.4 Writing and Maintaining Tests 14

1.2 Java Mechanics Lo 16
1.2.1 Notation and Syntax 16
1.2.2 Java Expressions oo 16
1.2.3 Precedence of Operations 20
1.2.4 Java Statements 21
1.2.5 Capitalization and Commenting Conventions 22

1.3 Java Data Types 23
1.3.1 Primitive Types L 23
1.3.2 Object Types 26

1.4 The Union and Composite Patterns 27
1.4.1 Defining Instance Methods on a Union Type 30
1.4.2 Member Hoisting 32
1.4.3 The Composite Pattern 35
1.4.4 Defining Instance Methods for a Composite Class 37
1.4.5 Conditional Statements 41
1.46 Blocks 41

1.5 Basic Program Design 000 42
1.5.1 The Design Recipe 43
1.5.2 An Extended Example: Lists 45

1.6 Static Fields and the Singleton Pattern 47
1.6.1 Static Fields 47
1.6.2 Singleton Pattern o000 48
1.6.3 Type Predicates and Type Casts in Java 51
1.6.4 Inheritance and the Composite Pattern 53

1.7 Using Classes to Enforce Invariants (Optional) 55

CONTENTS 2

1.8 Imterfaces 56
1.8.1 Multiple Inheritance o7
1.8.2 Implicit Polymorphism 58
1.8.3 Imterface Types 60

1.9 The Command and Strategy Patterns 61

1.10 Loose Ends 66
1.10.1 Static Methods 66
1.10.2 Other Uses of Static Methods 67
1.10.3 Casts and Static Type Checking 68
1.10.4 Local variables oo 70
1.10.5 Exceptions as Errors L. 71
1.10.6 Name and Method Overloading 72
1.10.7 Complete Java Programs 73

1.11 The Visitor Pattern 75
1.11.1 Interpreting Arithmetic Expressions 75
1.11.2 Openness in Data Design 78
1.11.3 Polymorphic Visitors 81
1.11.4 Polymorphic Visitors with Arguments 82

1.12 Exceptions and Runtime Errors 84
1.12.1 A Motivating Example 84
1.12.2 Using Java Exceptions 87
1.12.3 Exception Handling 89
1.12.4 Recommendations Based on Software Engineering Experience 91

1.13 Full Java o 0o 92
1.13.1 Overriding toString 93
1.13.2 Overriding equalso 93
1.13.3 Visibility 95
1.13.4 Genericso 96
1.13.5 Mutability 102
1.13.6 Other Java Language Features 103

2 Object-Oriented Data Structures 104

2.1 SeqUEnCEs 104
211 Arrays ... 104
2.1.2 Lists 111
2.1.3 Immutable Sequences 111
2.1.4 Mutable Sequences 118
2.1.5 List Containers 119
2.1.6 Quasi-Functional Lists 122
2.1.7 Nested Classes vs. Inner Classes 127

2.1.8 Extended Mutable Lists 128

CONTENTS

2.2

2.3
2.4

3.1

3.2

2.1.9 An Implementation
2.1.10 Collection Libraries
2.1.11 Alternate Representations of Lists
2.1.12 Hybrid Representations of Sequences
Trees o
2.2.1 Procedural Binary Tree Implementations
2.2.2 An OO Binary Search Tree Implementation for Maps
2.2.3 Performance of Binary Search Trees
2.2.4 Balanced Binary Trees
2.2.5 Other Techniques for Efficiently Searching a Collection
2.2.6 Hashing
SOrting
Simple Graph Algorithms

Graphical User Interfaces

GUI Programming
3.1.1 Model-View-controller Pattern
3.1.2 How to Writea View
3.1.3 How to Write a Simple Model
3.1.4 How to Write a Controller
What is Concurrent Programming?
3.21 Deadlock.

134
143
144
145
145
146
147
153
153
153
153
153
153

Chapter 1

From Scheme to Java

1.1 Introduction

At first glance, Java and Scheme appear to have little in common. Java is written in
notation similar to the widely-used C programming language, while Scheme is written
in parenthesized prefiz notation. In addition, Java expresses computations primarily
in terms of operations attached to objects while Scheme expresses computations pri-
marily in terms of functions applied to values—mechanizing the familiar world of al-
gebra. In short, Java is a data-centered language while Scheme is a function-centered
language.

Nevertheless, Java and Scheme are surprisingly similar beneath the surface. In
this short monograph, we will discover how easy it is for a Scheme programmer to
learn to write good Java code. The only obstacles are learning Java notation and
learning how to organize programs in object-oriented (data-centered) form.

1.1.1 What is an Object?

Before discussing the specifics of Java’s object system, let’s define what an object is.
Within a computer program, an object consists of

e a collection of variables called fields representing the properties of a specific
physical or conceptual object, and

e a collection of designated operations called methods for observing and changing
the fields of that object.

No code other than the designated operations can access or modify object fields. The
fields and methods of an object are often called the members of the object. Each
member of an object has a unique identifying name.

CHAPTER 1. FROM SCHEME TO JAVA)

To make the notion of object more concrete, let us consider a simple example.
Assume that we want to maintain a directory containing the office address and phone
number for each person in the Rice Computer Science Department. In Java, each
entry in such a directory has a natural representation as an object with three fields
containing the person’s name, address, and phone number represented as character
strings. We defer discussion about how to represent the directory itself until Section
1.4.

Each entry object must include operations to retrieve the name, address, and
phone number fields, respectively.

Let’s summarize the form of a directory entry as a table:

Fields:
String name;
String address;
String phone;

Methods:
String name();
String addressQ);
String phone();

This tabular description is not legal Java syntax. We will introduce the actual syn-
tactic details later in this discussion.

The three methods name(), address(), and phone() do not take any ezplicit
arguments because they are invoked by sending a “method call” to an entry object,
called the receiver, which serves as an implicit argument for the method. In Java, the
code defining a method can refer to this implicit argument using the keyword this,
which is reserved for this purpose.

The syntax for method invocation in Java is quite different from the syntax for
function application in Scheme. Given an object o of some class C including the 0-ary
method m, the expression

o.m()

invokes the m method of object o. The object o in the method call above is called the
receiver because it “receives” the method call. (In the Java Language Specification,
the term target is used instead of receiver.)

In general, method invocations take arguments. The number and type of the
argument expressions in an invocation must match the method’s signature given in
its declaration. The the receiver o in a method call o.m(ey, ..., e,) can be any
legal Java expression. Similarly, each argument e; can be any legal of expressions of
the type specified for that argument.

CHAPTER 1. FROM SCHEME TO JAVA 6

Consider the following example: assume that a Java program can access an Entry
object e and needs to get the value of the name field of this object. The method
invocation

e.name()

returns the desired result. For each field declared in a class, Drjava automatically
generates a corresponding accessor (or getter) method with the same name as the
field. Accessor methods are 0O-ary; they do not take any explicit arguments beyond
the receiver written to the left of the method application.

Of course, the Scheme expression equivalent to

e.name ()
18 written
(Entry-name e)

Accessor methods in Scheme must be unary because there is no implicit receiver
object in a function application.

Finger Exercise: In the DrJava programming environment, set the Language
Level to Elementary. Then type the text

class Entry {
String name;
String address;
String phone;

}

in the Definitions (top) pane, save it as the file Entry.djoO, compile it (using the
“Compile” button), and type the following statements in the Interactions pane:

Entry e = new Entry("Corky","DH 3104","x 6042");
e.name ()
e.phone ()

The first line defines a variable e as an Entry object with name field "Corky", address
field "DH 3104", and phone field "x 6042". The second line is an expression that
computes the name field of e. What value does the Java evaluator return for the name
field of e? The phone field of e? H

If we want to perform more interesting computations than constructing objects
and accessing the values of their fields, we need to introduce the primitive operations
for computing with familiar forms of data like numbers and strings.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

CHAPTER 1. FROM SCHEME TO JAVA 7

-5 + 3
-(5 + 3)
5% 3
5./3.

5/0

5./0.

3+ .1 .1 - 3.
5 <6

5. > 6.

llcorll + Hkyll
"DH" + " 3104"

directly in the Interactions pane. Did you get the answers that you expected? B

Java has the same precedence rules for expressions built from primitive operations
as C/C++, which roughly follow standard mathematical conventions. The precedence
of Java operations is explained in detail in Section 1.2.3.

Finger Exercise: In the Drlava Interactions pane, try evaluating the following
expressions:

72. - 32. % 1.8
(72. - 32.) x 1.8
72. - 30. - 12.
72. - (30. - 12.)

Did you get the answers that you expected? Bl

Program statements have essentially the same syntax in Java as in the widely used
C language. The most common form of statement in Java is an assignment statement
that introduces a new variable:

type var = expr;

In the preceding syntax template, type is a Java type name, var is a Java variable
name, and ezpr is an expression of type compatible with the type of var. The assign-
ment statement

int x = 5;

introduces the variable x and gives it the value 5. We used this form of statement in
an earlier Finger Exercise to define an Entry object.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
statements and expressions:

CHAPTER 1. FROM SCHEME TO JAVA 8

int x = 5;

X*X

double d = .000001;
double dd = dxd;

dd

dd*xdd

1. + dd

1. + ddxdd

Did you get the answers that you expected? B

Java includes all of the basic statement forms found in the C/C++ programming
language expressed in essentially the same syntax. In the remainder of this mono-
graph, we will introduce these statement forms as they are needed. Although Java
accepts most C/C++ syntax, many common C/C++ constructions are considered
bad style in Java.

Note that Java treats boolean as a distinct type from int, eliminating some
common sources of errors in C/C++. For example, the test expression in a conditional
statement (explained in Section 1.4.4 must be of type boolean.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

int x = 7;
if (x 5) y = 0; else y = 10;
y

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax, replacinng =" in the test expression (x = 5) by "==". R

Finger Exercise: In the Drlava Interactions pane, try evaluating the following
sequence of statements and expressions:

boolean flag = (x = 7);
flag

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax (replacinng ”=" in the right hand side of the definition of flag by "=="). B

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

CHAPTER 1. FROM SCHEME TO JAVA 9

String first = "George";
String last = "Washington";
first + last

first + " " + last
first.concat(last)
first.concat(rest)
first.concat(" ").concat(rest)

Did you get the behavior that you expected? B

Note that DrJava does not print the value of a Java expression if you type a semi-
colon following it. Java classifies variable bindings as expressions and they technically
can be embedded within an expression, but this usage is generally considered bad
style.

1.1.2 Classes: Templates for Creating Objects

Every Java program consists of a collection of classes—mnothing else. A class is a
template for creating a particular form of object. A Java class definition corresponds
to a Scheme define-struct definition generalized to include all of procedures that
process objects of the defined class. In Java, all program code must be part of some
class.

Each object created by a class template contains the same members, each of which
is either a field or a method. A field is a “container” that holds a value. A method is
an operation on the fields of the object and any values that are passed as arguments
to the method. The objects created by a particular class template are called the
instances or objects of that class. Each instance contains the members specified in
the class template.

Each member of a class has a name consisting of a Java identifier, any sequence of
“alphanumeric characters” (letters, digits, and _) beginning with a letter or _. A few
identifiers are reserved by Java for use as keywords. A complete list of the keywords
of Java is given in Chapter 1.2 which is an Appendix on the syntax of Java. For now,
the only keywords that concern us are:

abstract class float new void
boolean double int return

case else if then

char extends long this

But beware: you cannot use any keyword for a regular identifier. So you will need to
learn the list of keywords in Chapter 1.2 soon or you may trip over an inexpliciable
error involving using a keyword as an ordinary identifier.

CHAPTER 1. FROM SCHEME TO JAVA 10

For now, we will require all the identifiers used within a class to be unique, i.e.
you will not be allowed to use the same name for both a field and a method in a class.
We will gradually relax this restriction as we learn more of the Java language, e.g.,
in Section 1.10.6.

Let’s re-examine the Java class Entry defined in the first Finger Exercise above.
It consists of only three fields name, address and phone which must contain String
values.

The DrJava Elementary language level automatically creates four methods of the
class Entry including:

e a special constructor method

Entry(String name, String address, String phone)
Figure 1: The Entry class

that creates and initializes Entry objects; and

e three accessor methods name (), address(), and phone () that extract from an
Entry object;

An instance (object) of the class Entry is created by an expression of the form
new Entry("SomeName", "SomeAddress", "SomePhone")

The three accessor methods generated by the Elementary language level are very
simple yet they illustrate the most important characteristic of object-oriented pro-
gramming: operations are attached to the data objects that they process. The methods
name (), address (), and phone () take no arguments yet they have access to the fields
of the Entry object to which they are attached.

Finger Exercise: In DrJava, open the file Entry.djO that you created in the
very first Finger Exercise. The following Java program text

class Entry {
String name;
String address;
String phone;

b

defining the Entry class should appear in the Definitions pane.
Compile the class by hitting the Compile button.
In the DrJava Interactions pane, try evaluating the following program text:

Entry el = new Entry("Corky", "DH 3104", "x 6042");
el.phone ()
Entry e2 = new Entry("Stephen", "DH 3102", "x 3814");

CHAPTER 1. FROM SCHEME TO JAVA 11

class Entry {
String name;
String address;
String phone;

/* methods */

/** Returns true if name matches keyName. */
boolean match(String keyName) {
return name.equals(keyName) ;
}
}

Figure 1.1: The expanded Entry class

e2.phone ()

el.equals(e2)

Entry e3 = new Entry("Corky", "DH 3104", "x 6042");
el.equals(e3)

[
We will explain the syntax of Java class definitions in more detail in Section 1.1.2.

1.1.3 Defining Instance Methods

The three primitive instance methods name, address and phone in class Entry all
simply return the value of a field from the object that received the method call.

Let us define another method for class Entry that does more computation. Assume
that we want to define an operation match for the class Entry that takes a string
argument keyName and determines whether it matches the name field of the specified
Entry object. We could include such a method definition within the definition of
class Entry as shown in Figure 1.1.3:

The match method is implemented using the equals method on the String field
name. Recall that the String class is built-in to Java. The equals method from the
String class takes an argument and returns true if (and only if) it is a String with
exactly the same contents as the receiver String object. Hence,

(new Entry("Corky","DH 3104","x 6042")) . match("Corky")

returns

CHAPTER 1. FROM SCHEME TO JAVA 12

true,
while

(new Entry("Corky","DH 3104","x 6042")) . match("Matthias")
returns

false.

The code for the match method has access to the fields of the Entry object to which
they are attached even though this object is not explicitly passed as an argument to
the method. The Entry object el in the method call

el.match(e2)

is called the receiver because it “receives” the method call. (In the Java Language
Specification, the term target is used instead of receiver.) The receiver is as an implicit
argument for the method. In Java, the code defining the method can refer to this
implicit argument using the keyword this, which is reserved for this purpose.

Warning The Java infix operator == can be used to compare objects, but the
results of such a comparison are problematic for many applications. On objects, the
== operator returns true if (and only if) the both arguments are ezactly the same
object. Hence, if x is a variable of some object type T', the expression

x ==
returns

true
For distinct object arguments, the == operator returns false. Hence,

new Entry("Corky","DH 3104","x 6042") ==
new Entry("Corky","DH 3104","x 6042")

returns
false

because each occurrence of new creates a distinct object. For most Java object types
including String, the == operator is not a reliable mechanism for testing equality! For
example, Java does not guarantee that it creates only one copy of a String constant.

CHAPTER 1. FROM SCHEME TO JAVA 13

Finger Exercises

1. Add the code for the match method to your Entry class. Test your code in
the Interactions pane by evaluating some examples. You can archive test code
entered in Interactions pane by saving your Interactions history; right-click on
your mouse while it is over the Interactions pane. DrJava gives you an oppor-
tunity to edit this history (to eliminate erroneous entries) before saving it as a
file. Save your history in the file Entry.hist (DrJava automatically adds the
file extension .hist to the file name that you provide). W

2. Modify your match method to use the == operator instead of the equals method.
Try running you archived tests stored in Entry.hist. If none of these tests fail,
devise some test cases where using == makes the test fail! Hint: the Java com-
piler only constructs one copy of a String constant, so repeated uses of a given
String all refer to same object. The DrJava interpreter, however, constructs a
new copy of a String constant for every occurrence. Hence a String constant
that appears in the DrJava Interactions pane is distinct from the same String
constant defined in a class in the Definitions pane. Moreover, different occur-
rences of the same String constant in the Interactions pane refer to different
objects. Save your updated test history in the file Entry.hist. B

Java Design Rule: There are only two valid uses of the == operator:
e to compare values of primitive type; and
e to test object identity (not equality!).

The second use is relatively uncommon.

In the code for the Entry class, the constructor and accessor methods all refer to
fields of this, the hidden parameter bound to the object that is the receiver of the
method invocation. For example, the expression

this.name

returns the value of the name field of the object this. In constructor invocations,
this is bound to the newly allocated object.

One attractive feature of Java is that the method syntax mandates a contract
(declaration of input types and output type) as part of the method header. For
example, the method header

boolean match(String keyName)

CHAPTER 1. FROM SCHEME TO JAVA 14

indicates that the match method takes a single String argument and returns a
boolean value. In contrast to Scheme, the type of each method argument is declared
in the method header.

1.1.4 Writing and Maintaining Tests

In Scheme we practiced test-driven development by writing tests for a program using
the check-expect operation before we wrote the code for the program. In Java,
software developers use testing frameworks to perform the same task. In fact, OO
languages like Java are particularly well-suited to test-driven development because
programs are expressed as a collection of small largely independent units of code,
namely classes. In writing and maintaining a large program, the software developers
need to devise and maintain tests for every non-trivial method and run all tests
every time the code base (the files containing program text) is changed to ensure
that the changes have not “broken” the program. Test are better expressed as classes
where test methods silently return (assuming no failures) than they are as interactions
histories where the output must be carefully expected to determine where or not the
tests passed. JUnit only updates a progress bar as it runs as long as all tests pass.

When running all of the archived tests for a large program, the software developers
only want to know when a test fails. If a program modification has been performed
correctly, all of the archived tests will succeed. Hence, we want a test manager
application that runs all the tests for a program and only reports the errors (failed
tests) that it finds. The most widely used test manager (also called a testing framwork)
for Java is called JUnit. JUnit is a conventional Java program that can be run from
the command line but DrJava has integrated JUnit so that it can be conveniently
run inside DrJava. Moreover, DrJava helps the programmer write unit test classes by
generating templates for such classes.

Let’s use DrJava to help us write a test class for the Entry class. The second
command in the File menu is called New JUnit Test Case When we depress this
menu item, DrJava creates a new class in a new file (not yet written to disk) after
popping up a small window asking for the name of the class. Let’s chose the name
EntryTest. The new file initially contains the following text:

import junit.framework.TestCase;

/%%
* A JUnit test case class.
* Every method starting with the word "test" will be called when running
* the test with JUnit.
*/
public class EntryTest extends TestCase {

CHAPTER 1. FROM SCHEME TO JAVA 15

import junit.framework.TestCase;

/** A JUnit test case class for the Entry class. */
public class EntryTest extends TestCase {

/** Tests the match method. */

public void testMatch() {
Entry e = new Entry{"Corky", "DH 3104", "x 6042");
assertTrue("match should succeed", e.match("Corky"));

assertTrue("match should fail", ! e.match("Henry");
b
+
Figure 1.2: A JUnit test class for the Entry class
/*%
* A test method.
* (Replace "X" with a name describing the test. You may write as
* many "testSomething" methods in this class as you wish, and each
* one will be called when running JUnit over this class.)
*/
public void testX() {
+
3

Most of the generated text is comments instructing us what to do. Since we have
only defined the equivalent of a Scheme define-struct statement augmented by one
explicitly defined method match, there is little to test. We create two test cases for
match, including one where the match should succeed and one where it should fail.

The assertTrue method takes two arguments: a String name used by JUnit to
identify the test when reporting a failure and a boolean expression that evaluates to
true iff the test succeeds.

If we run this test class using the unit test runner provided by DrJava it will report
that all test passed successfully. Of course, our only test method, named testX at
this point, does nothing, but it succeeds because it does not contain any failing
tests. As soon as we define some methods to process IntLists, we will define some
corresponding test methods, renaming our vacuous testX method in the process.

The first line of the EntryTest file contains an import statement that tells Java
to include the class junit.framework.TestCase in the compiled program. DrlJava

CHAPTER 1. FROM SCHEME TO JAVA 16

includes all of the libraries packaged with the Java JDK plus the JUnit library, which is
developed, maintained, and distributed by junit.org, much as DrJava is developed,
maintained, and distributed by drjava.org, which is hosted on the Rice University
Computer Science Department web server.

Finger Exercise: In the DrJava programming environment at Elementary Lan-
guage Level, open the file Entry.djO and create a test class EntryTest using the
DrJava New JUnit Test Case command that looks like the class in Figure 1.1.4. Run
this test class, make sure that it works, and save is as file EntryTest.djo. B

The assertTrue method is very well-suited to testing operations that return a
boolean value. But in many cases, we need to test method invocations that return val-
ues that are not boolean. Such tests can clearly be expressed by assertTrue invoca-
tions (using equals) but the assertEquals method is more convenient. assertEquals
takes three arguments: a String name, the expected answer, and the expression be-
ing evaluated as a test. Since Java is a staticallly typed language, there are nine
different versions of assertEquals so the method (family) can be to check a result
of any type (any of the eight primitive types plus Object.

1.2 Java Mechanics

1.2.1 Notation and Syntax

In Scheme, programs are constructed from expressions. In contrast, Java programs
are constructed from statements. Statements are program phrases that do not have
values, similar to Scheme expressions like (define ...) that return the dummy
value (void). Nevertheless, many Java statements contain embedded expressions, so
let us look briefly at Java expressions.

1.2.2 Java Expressions

In Java, arithmetic, boolean, and String expressions are written in conventional
mathematical infiz notation, adapted to the standard computer character set (called
ASCII). For example, the Scheme expression

(amd (< (+ (x x x) (xyy)) 25) (> x 0))
is written in Java as
(x*xx + y*xy < 25) && (x > 0)

The syntax of Java expressions is patterned after the C programming language. Like
C, Java uses the symbol && for the “and” operation on boolean values (true and

CHAPTER 1. FROM SCHEME TO JAVA 17

false) and the symbol == for the equality operation on numbers. (Warning: the
symbols & and = are used in C and Java for other purposes. You have already seen
the primary use of the of = symbol, which is defining the values of variables.)

The following table lists the major infix operators provided by Java:

+ addition and String concatenation
- subtraction

* multiplication

/ division

% mod (remainder from integer division)
< less than

<= less than or equal

> greater than

>= greater than or equal

== equal

= not equal

&& and

[l or

The Java arithmetic operators all perform the indicated operations using computer
arithmetic instead of genuine arithmetic. Computer arithmetic does not exactly con-
form to the standard mathematical conventions. Calculations involving real numbers
(Java types float and double) are approximate; the computer rounds the true re-
sult to the nearest real number expressible using the number of digits provided in the
standard machine representation (scientific notation with a fixed number of digits for
the fraction and exponent). Integer calculations are done exactly provided that the
answer is an integer and that it can be represented using 31 binary digits plus a sign.’
Note that integer division always produces integer answers (unless you try to divide
by zero which is an error). For example, the expression

5/3
produces the result
1

which is the quotient of 5 divided by 3. Integer division truncates the true rational
result, dropping the digits to the right of the decimal point. Similarly, The expression

5%3

produces the result

LAs we will explain shortly, Java supports several different sizes of integer representation; 31
binary digits plus sign is the default for integer constants.

CHAPTER 1. FROM SCHEME TO JAVA 18

2

which is the remainder of 5 divided by 3. In Java program text, spaces between
symbols are ignored; the expression

5/ 3
is equivalent to the expression

5/3

Finger Exercise: In the DrJava programming environment, try evaluating the
following expressions in the Interactions pane:

5/3

h 3
./3.
/0
./0.
<6
. < 6.
+ .1

w oo oo ool

* .1 - 3.

Did you get the answers that you expected? Wl

All of the binary infix operators in Java are either arithmetic {+, -, ...} relational
{<==, ...}, or boolean {&&, ||, ...} except for + when it is used to concatenate strings.
If either argument to + is of String type, then Java converts the other argument to
a String. Object values are coerced to type String using their toString() meth-
ods. As we explain in Section 1.13.1, every object has a toString() method. The
concatenation operator converts primitive values to strings using built-in conversion
routines that we will discuss later.

The order in which arguments appear and the use of parentheses in mixed integer
and string expressions critically affects the conversion process. For example, the
expression

9+ 5+ 1+ "g"
evaluates to the String "15S" while the expression
9 + (5 + (1 + usn))

evaluates to the String "9518". The association rules for Java expressions are ex-
plained in Section 1.2.3.

CHAPTER 1. FROM SCHEME TO JAVA 19

Java also supports the unary prefix operators - (arithmetic negation) and !
(boolean “not”) used in conventional mathematical notation. Parentheses are used
to indicate how expressions should be decomposed into subexpressions.

Finger Exercise: If the DrJava Interactions pane, try evaluating the following
expressions:

-5+ 3
-(5 + 3)
I (5 < 6)

Conditional Expressions

The only pure expression form in Java that deviates from conventional mathematical
notation is the conditional expression notation

test 7 comsequent : alternative

borrowed from C. This expression returns the value of consequent if test is true and
the value of alternative if test is false. It corresponds to the Scheme cond expression

(cond [test comsequent] [else alternative])
or, alternatively,
(if test consequent [alternativel])

Note that when test is true, alternative is not evaluated. Similarly, when test is
false, consequent is not evaluated. Hence, the expression

2<0 7?7 2/1-1): 0
does not divide 2 by 0. The test expression must be a boolean value, true or false.

Finger Exercise: In the Drlava Interactions pane, try evaluating the following
expressions:

2<0)?722/1-1) :0
(0 < 1) ? "foo" : "bar"
17 ? true : false

The last example produces a syntax error because 17 is not a boolean value. B

Conditional expressions are hard to read unless they are short and cleanly format-
ted. Moreover, in many cases the code can be written more clearly using conventional
if statements, which are explained in Section 1.4.4. In DrJava program text, condi-
tional statements are forbidden at the Elementary and Intermedate levels.

CHAPTER 1. FROM SCHEME TO JAVA 20

1.2.3 Precedence of Operations

Since Java uses conventional infix notation for expressions it relies on the notion of
precedence to determine how expressions like

12 * 5 + 10

should be interpreted. The Java operations given in the preceding subsection are
divided into the following precedence groups:

prefix operators - !

multiplicative * [/ h
additive + -
relational <> >= <=
equality == I=
logical and &&

logical or 'l
conditional ? oL

from highest to lowest. A higher precedence operator has greater “binding power”.
For example, the expression

72. - 32. % 1.8
is equivalent to
72. - (32. * 1.8)

because * has higher precedence than infix -.

Finger Exercise: In the Drlava Interactions pane, try evaluating the following
expressions:

72. - 32. % 1.8
(72. - 32.) x 1.8

All of infix operators listed above are left-associative: when infix operators of equal
precedence are chained together, the leftmost operator has precedence. For example,

72. - 30. - 12.
is equivalent to

(r2. -30.) - 12.

CHAPTER 1. FROM SCHEME TO JAVA 21

Parentheses can be used to override the built-in precedence and associativity of op-
erators. Hence,

(72. -32.) = 1.8

equals 40*1.8. Similarly,

72. - (30. - 12.)
equals
72. - 18.

It is a good idea to use parentheses if you have any doubts about the precedence
relationship between consecutive operators. The judicious use of parentheses can
make complex expressions easier to read.

Finger Exercise: In the Drlava Interactions pane, try evaluating the following

expressions:

72. - 30. - 12.
72. - (30. - 12.)

1.2.4 Java Statements

Since the Java expression language is not very rich, Java programs express com-
putations as sequences of statements that bind variables and fields rather than as
compound expressions. The most common form of Java statement is an assignment
statement

type var = expr;

where type is a Java type name, varis a Java variable name, and expris an expression
of type compatible with the type of var. The assignment statement

int x = 5;

asserts that “the variable x has value 5”.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
statements and expressions:

CHAPTER 1. FROM SCHEME TO JAVA 22

int x = 5;

X*X

double d = .000001;
double dd = dx*d;

dd

dd*xdd

1. + dd

1. + ddxdd

Did you get the answers that you expected? B

Java variable names and type names must be identifiers. An identifier is any
sequence of “alphanumeric characters” (letters, digits, and _) beginning with a letter
or —except for the following keywords, which are reserved and may not be used as
variable names or type names:

abstract default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try

case extends int short void
catch final interface static volatile
char finally long super while
class float native switch

const for new synchronized

continue goto package this

Java is case-sensitive; the variable X is distinct from the variable x. There are three
kinds of variables in Java: class fields, method parameters, and local variables. Fields
and method parameters are discussed in detail in the next subsection. We will defer
a discussion of local variables until Section 1.10.4.

Java includes all of the basic statement forms found in the C programming lan-
guage expressed in essentially the same syntax. In the remainder of this monograph,
we will introduce these statement forms as they are needed. Although Java accepts
most C syntax, many common C constructions (such as embedding an assignment
inside in an expression) are considered bad style in Java.

1.2.5 Capitalization and Commenting Conventions

By convention, Java programs are written entirely in lower case characters with three
exceptions.

e The first letter of class names are capitalized to distinguish class names from
member names.

CHAPTER 1. FROM SCHEME TO JAVA 23

e The first letter in each word of a multi-word identifier after the first is capi-
talized. For example, the built-in Java class Object includes a method called
toString() that we will discuss later. The capital S signifies the beginning of
a word within the multi-word name toString().

e The names of constant static final fields (discussed in Section 1.6) are writ-
ten entirely capital letters. We have not yet discussed static fields or the final
attribute because neither feature is supported in the Elementary language level
of DrJava and final is not supported even in the Intermediate language level.
We will introduce the static attribute in Section 1.6 and the final attribute
in Section 1.13.5.

These conventions are not enforced by Java compilers, but it is considered bad style
to violate them. A related convention is to never use the special character $ in a
name; this character is reserved for the use of the Java compiler. Unfortunately, most
Java compilers do not enforce this convention.

Java relies on same commenting conventions as those in C/C++. A comment that
is confined to a single line begins with the character sequence // and ends at the end
of the line. Longer comments must be enclosed between the opening “bracket” /*
and “closing” bracket */. Examples of both form of comments appear in Section 1.4.
Note that a bracketed comment can appear in the middle of a line of code.

Finger Exercise: add both forms of comment to the Entry class from the pre-
ceding exercise.

1.3 Java Data Types

Java programs manipulate two fundamentally different kinds of values: primitive
values and object values.

1.3.1 Primitive Types

All primitive values belong to one of eight primitive types: int, float, boolean,
char, byte, short, long, and double. Four of these types designate different sizes
of bounded integers:

e byte contains the integers ranging from -128 to 127;
e short contains the integers ranging from -32768 to 32767;

e int contains the integers ranging from -2147483648 to 2147483647; and

CHAPTER 1. FROM SCHEME TO JAVA 24

e long contains the integers ranging from
-9223372036854775808
to
9223372036854775807.

In practice, only three of these primitive types are widely used: int, boolean, and
double.

In many programming contexts, it is convenient to treat primitive values and ob-
ject values uniformly. Java accommodates this practice by providing a built-in wrap-
per class for each primitive type. A wrapper class consists of single field containing
a corresponding primitive value plus a variety of methods for manipulating wrapped
objects and the corresponding primitive values. The wrapper class corresponding to
each primitive type is given in the following table:

Primitive Type Wrapper Type

int Integer
float Float
boolean Boolean
char Character
byte Byte
short Short
long Long
double Double

Note that the wrapper class names follow a uniform naming convention (the prim-
tive name with a capitalized first letter), exzcept for Integer and Character. In most
contexts, Java automatically converts between corresponding primitive and wrapped
values. A program can explicitly create a wrapped value by using the constructor
invocation

new wrapperClassName(primitive Value)

where wrapperClassName is any wrapper class name and primitive Value is an expres-
sion denoting a corresponding primitive value. For example,

new Integer(0)

creates an Integer object corresponding to the int value 0.

The boolean type has two values true and false. The char type supports the
Unicode character set which includes all conventional ASCII characters plus almost
any foreign character imaginable. The char type is rarely used in Java programs
because a flexible String object type is built-in to the language. The remaining
two types float and double are used for approximate computations involving real
numbers; they denote standard IEEE 32-bit and 64-bit formats, respectively.

CHAPTER 1. FROM SCHEME TO JAVA 25

Numeric Constants Java interprets unadorned integer constants as values of type
int. Long integer constants are indicated by attaching the suffix L to the number.
For example, the constant 9223372036854775807L can be used in Java program text,
while the same constant without the L is an error because it is too big to be an int.
The double type is the default type for any floating point constant. On modern
machines, there is little reason to use the less precise float.

Conversions Between Types Java will automatically convert any numeric type
to a more “general” numeric type demanded by context. The following list gives the
primitive numeric types in increasing order of generality:

byte — short — int — long — float — double

Note that the notion of generality here is imperfect in some situations. The conversion
of a long to a float, for example, will often lose precision. In fact, even the conversion
of a really large long value to a double can lose precision.

Java provides explicit conversion operators called casts to convert a numeric type
to a less general type. A cast is simply a type name enclosed in parentheses used a
prefix operator. For example, the following expression casts the int constant 127 to
the type byte

(byte)127

When converting from one bounded integer type to another, Java silently truncates
leading digits if the output type is shorter than the input type. Watch out!

Finger Exercise: In Java, the maximum long value is denoted Long.MAX_VALUE.
(This notation will be explained in detail in Section 1.6.1. In DrJava Interactions pane,
cast the value of Long.MAX_VALUE to double. What do you get? Cast this value back
to type Long. Did the you get back your original result? What is going on?

Try casting Long .MAX_VALUE - 511 to double and back to long. Do you get the
same result? How does this result compare to (long) (double) Long.MAX_VALUE.
Try casting the maximum Long.MAX_VALUE - 511 to double and back to long..

Cast Long.MAX_VALUE to type float and back to long. Do you see a pattern
emerging? Try casting Long.MAX VALUE - Integer.MAX VALUE to float and back
to long. A float has a fraction consisting of 23 binary digits plus a sign bit while
a long has 63 binary digits plus a sign bit. Subtracting Integer.MAX_VALUE from
Long.MAX_VALUE simply clears (zeroes) the rightmost 31 binary digits of Long.MAX_VALUE
and hence has no impact on its value when converted to a float.

Java accepts integers expressed in hexadecimal (base-16) notation if they are pre-
ceded by the prefix 0x. Hence, Integer .MAX_VALUE == Ox7FFFFFFF and { Long.MAX_VALUE
- Integer.MAX VALUE == (Long.MAX_VALUE >> 31) << 31. } Check this cacula-
tion in the Interactions pane. The expression (x >> 31) << 31 for any long value x
clears the rightmost 31 bits of x. How many digits of Long.MAX_VALUE can you clear

CHAPTER 1. FROM SCHEME TO JAVA 26

(using shift operations) before casting to float affects its value? W

1.3.2 Object Types

Object values are created by instantiating classes, which may either be built-in or
program-defined. Classes are organized in a strict hierarchy with the special built-in
class Object at the top. Every class C except Object has a unique parent in the
hierarchy called the superclass of C. Object has no parent because it is the root of
the object type hierarchy.

A descendant in the class hierarchy is called a subclass. Each subclass of a class
C includes all of the members (fields and methods) of C' and possibly additional
members. For this reason, we say that each immediate subclass of (child of) C extends
C. Note that subclass relation is transitive and reflexive. If class A is a subclass of
class B and class B is a subclass of class C'then A is a subclass of C' (transitivity). In
addition, every class A is a subclass of itself (reflexivity).

We will reserve the term extends to describe the immediate subclass (child) rela-
tion: A extends B iff A is an immediate subclass of B. Hence, the extends relation
is neither transitive nor reflexive. Since Object is the top class of the hierarchy, all
classes are subclasses of Object.

For example, the built-in classes Integer and Float extend the built-in class
Number which extends Object. Hence, the superclass of Integer is Number, the
superclass of Float is Number, and the superclass of Number is Object.

Object values are actually references to objects. For this reason, two different
fields can be bound to ezactly the same object. In Java, objects are never implicitly
copied. When a field or method parameter v is bound to an object o, the value of
v is a reference to the object o, not a copy of o! Scheme follows exactly the same
conventions with regard to copying program data.

Every Java class C has an associated type (' consisting of all instances of class
C' and all of its subclasses. Hence, the type Object contains all object values. The
built-in class String has the class Object as its superclass. Since the class String
has no subclasses, the only values of type String are instances of the class String. In
contrast, the built-in class Number is a child of class Object and has several subclasses
including Integer and Float. Hence, all instances of the classes Integer and Float
are values of type Number.

In Java, every field and method has a declared type given as part of its definition.
For a method, the declared type includes the type of the result and the types of the
parameters.

Java determines the type of every program expression using a simple set of rules
and confirms that

CHAPTER 1. FROM SCHEME TO JAVA 27

e the value assigned to a field is consistent with the field’s declared type;

e the values passed as arguments to a method are consistent with the correspond-
ing parameter types;

e the value returned by a method is consistent with the declared return type of
the method; and

e the member name in a field reference or method invocation is compatible with
the declared type of the receiver.

We will discuss these “type-checking” rules in more detail in Section 1.10.3.

1.4 The Union and Composite Patterns

In our department directory example, an object of type Entry only has one form,
namely an instance of class Entry. If we were designing the data for a more compre-
hensive directory such as a city phone directory, we would need more than one form
of entry. At a minimum, we would need entry formats suitable for business listings,
government listings, and residential listings. For such a phone directory, we might
define an entry as follows.

A CityEntry is either:

e a BusinessEntry(name,addr,phone,city,state),
e a GovernmentEntry(name,addr,phone,city,state,gov), or
e a ResidentialEntry(name,addr,phone),

where name is a string specifying the name for the listing, addr is a string specifying
the street address for the listing, phone is a string specifying the phone number (with
area code) for the listing, city and state are strings specifying the city and state for
the listing, and gov is a string specifying the government entity for that the listing,
e.g. the ”City of Houston”.

The BusinessEntry and GovernmentEntry forms include city and state informa-
tion because businesses and government agencies that serve clients in cities outside
their local calling area often elect to have their phone numbers included in the direc-
tories of other cities (in