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Introduction 

Individual tutoring is perhaps the first instructional method.  It dates back 

at least to Socrates and the Socratic method.  Although one-to-one tutoring by 

expert human tutors has been shown to be much more effective than typical one-

to-many classroom instruction (Bloom, 1984), it has not been economical to 

provide every child with an individual tutor.  Lectures and books became 

pervasive in education to spread knowledge at lower cost.  However, increasing 

capabilities of computer hardware and software have been creating new 

opportunities to bring one-to-one tutoring to more students.  Furthermore, 

computer technology provides an opportunity to systematically incorporate 

advances in learning science into the classroom, to test associated principles of 

learning, and best adapt them to the needs of students and teachers. 

Early attempts to use computers for instruction included Computer-Aided 

Instruction (Eberts, 1997) and then, later Intelligent Computer-Aided Instruction 

or Intelligent Tutoring Systems (Sleeman & Brown, 1982; Wenger, 1987; 

Corbett, Koedinger, & Anderson, 1997).  Computer-based instruction has been 

shown to be effective in increasing student learning beyond normal classroom 

instruction (e.g., Kulik & Kulik, 1991), however, not to the level of human tutors 

(Bloom, 1984).  Early attempts at Intelligent Tutoring Systems included 

mimicking Socratic dialog in teaching electronics trouble-shooting, adding 

intelligent questioning to an existing Computer-Aided Instruction system for 
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learning South American geography, adding tutoring strategies to an existing 

“expert system” for medical diagnosis, and adding tutoring strategies to an 

existing educational game for mathematics (Sleeman & Brown, 1982).  

In a parallel development that dates back even earlier, cognitive theories 

of human learning, memory, and problem solving were being implemented as 

computational models with computers (Newell & Simon, 1972). In the mid-

1980s, John R. Anderson and colleagues merged these two strands and introduced 

a more interdisciplinary approach to Intelligent Tutoring System development and 

testing (Anderson, Boyle, & Reiser, 1985) that added the discipline of cognitive 

psychology to the discipline of artificial intelligence that had previously been the 

prime mover. The Intelligent Tutors emerging from this approach were 

constructed around computational cognitive models of the knowledge students 

were acquiring and began to be called “Cognitive Tutors” (Anderson et al., 1995).  

These cognitive models represent learner thinking or cognition in the domain of 

interest, whether it is algebra, programming, scientific reasoning, or writing 

essays.  The cognitive model also includes a representation of the kinds of early 

learner strategies and misconceptions that are steps in the trajectory from novice 

to expert. 

Full-scale Cognitive Tutors have been created to help students learn in a 

variety of domains including middle and high school mathematics (Koedinger, 

Anderson, Hadley, & Mark, 1997; Koedinger, 2002), computer programming 

(Anderson et al, 1995; Mathan & Koedinger) and college-level genetics (Corbett 

et al 2005).  Cognitive Tutors typically speed learning or yield greater learning 

relative to conventional problem-based instruction (Anderson, et al., 1995) and 
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approach the effectiveness of good human tutors (Corbett, 2001). The most 

widely distributed Cognitive Tutor is one for algebra, which is part of a complete 

course for high school algebra and in 2004-2005 was in use in some 2000 schools 

across in the United States. As described later in the paper, students in Cognitive 

Tutor Algebra I have been shown to score twice as high on end-of-course open-

ended problem solving tests and 15% higher on objective tests as students 

enrolled in a traditional Algebra course. A few of these schools are high 

performing, resource rich suburban schools, but most of them are urban or rural 

schools, with average teachers and with a relatively large number of economically 

disadvantaged, minority or learning disabled students. We roughly estimate some 

half million students have used the tutor for a total of about 20 million student-

hours.   

Cognitive Tutors Provide Aspects of Human Tutoring 

Cognitive Tutors support learning by doing, an essential aspect of human 

tutoring.  Learning by doing is the idea of putting students in performance 

situations whereby the objective concepts and skills can be applied and 

instruction can be provided in the context of or in response to student needs1. 

Cognitive Tutors accomplish two of the principal tasks characteristic of human 

tutoring: (1) monitoring the student’s performance and providing context-specific 

instruction just when the individual student needs it, and (2) monitoring the 

student’s learning and selecting problem-solving activities involving knowledge 

goals just within the individual student’s reach. 

This monitoring of students’ performance and learning makes use of the 

cognitive model and two key algorithms, model tracing and knowledge tracing. In 
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model tracing, the cognitive tutor runs the cognitive model forward step-by-step 

along with the student to follow the student’s individual path through complex 

problem spaces, providing just-in-time accuracy feedback and context-specific 

advice. In knowledge tracing, the tutor employs a simple Bayesian method of 

estimating the student’s knowledge and employs this student model to select 

appropriate problems. 

Chapter Overview 

In the following section we describe Cognitive Tutors and their foundation 

in ACT-R theory. Extensive Cognitive Tutor research has served both to validate 

and modify the ACT-R cognitive architecture model (cf. Anderson & Lebiere, 

1998) and we review six general principles of intelligent tutor design that were 

derived from this theoretical framework (Anderson et al., 1995). While ACT-R 

theory provides an important cognitive modeling framework, it does not prescribe 

course curriculum objectives and activities, it cannot precisely anticipate the prior 

knowledge that students bring with them to a course or a problem-solving 

activity, and it cannot prescribe scaffolding activities to help students develop a 

deep understanding of domain knowledge. In the final section of the chapter, we 

describe the learning science principles and methods that we have employed to 

address these instructional design questions.  

==INSERT FIGURE 1 HERE== 

Cognitive Tutor Algebra: A Brief Example  

A screen shot of a unit in Cognitive Tutor Algebra is shown in Figure 1.  

Cognitive Tutors tend to have relatively rich graphical user interfaces that provide 

a workspace in which students can demonstrate a wide variety of problem solving 
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behavior.  The workspace changes as students progress through units.  The 

workspace in Figure 1 includes a problem scenario window in the upper left 

where students are presented with a problem situation, often with real facts or 

data, that they are expected to analyze and model using the tools in the 

workspace.  The tools illustrated in Figure 1 are the Worksheet, Grapher, and 

Solver.  In this unit, the Worksheet has automated features like a spreadsheet. 

Once students write the algebraic expression for the height “67+2.5T” given the 

time, then the worksheet computes a height value (e.g., 117) when a time value is 

entered (e.g., 20).  In earlier units, the Worksheet does not have these automated 

features, but is more like a table representation on paper and students must 

demonstrate they can perform the steps on their own..  Similarly, the Grapher and 

Solver tools change as students advance through tutor units.  Initially these 

behave much like blank pieces of paper where students do all the work.  Later 

these tools begin to automate lower level skills, like plotting points or performing 

arithmetic and let students focus on acquiring higher-level concepts and skills, 

like deciding what the symbolic function to graph or what algebraic manipulation 

to perform. As students work, the Cognitive Tutor monitors their performance and 

may provide just-in-time feedback or on-demand solution-sensitive hints in the 

hint window.  The Cognitive Tutor also monitors student learning and displays 

these results in the Skills chart, shown in the top center of Figure 1. 

It is critical to consider the social context of use of any technology or 

educational innovation and Cognitive Tutors are no exception.  We have tended 

to create complete Cognitive Tutor courses whereby we apply learning sciences 

theory to develop instructional materials, like consumable textbooks, in addition 
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to Cognitive Tutor software. Virtually all schools using our mathematics 

Cognitive Tutors also use the curriculum and text materials.  The typical 

procedure is to spend 2 days a week in the computer lab using the Cognitive 

Tutor software and 3 days a week in the regular classroom using our text 

materials.  In the classroom, learning is active, student-centered, and focused 

primarily on learning by doing.  Teachers spend less time in whole-group lecture 

and more time facilitating individual and cooperative problem solving and 

learning.  In the classroom, students often work together in collaborative groups 

to solve problems similar to those presented by the tutor.  Teachers play a key 

role in helping students to make connections between the computer tools and 

paper and pencil techniques. 

Learning Sciences Theory Behind Cognitive Tutors 

Cognitive Tutors are based on the ACT-R theory of learning and 

performance (Anderson & Lebiere, 1998). The theory distinguishes between 

implicit performance knowledge, called “procedural knowledge” and explicit 

verbal knowledge and visual images, called “declarative knowledge”.  According 

to ACT-R, performance knowledge can only be learned by doing, not by listening 

or watching.  In other words, it is induced from constructive experiences -- it 

cannot be directly placed in our heads.  Such performance knowledge is 

represented in the notation of if-then production rules that associate internal goals 

and/or external perceptual cues with new internal goals and/or external actions. 

Examples of English versions of production rules are shown in Table 1. 

==INSERT TABLE 1 HERE== 
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Production rules characterize how both advanced and beginning students 

think or reason in a domain.  Students may acquire informal, heuristic, or 

incorrect patterns of thinking that are different than the concepts and rules that are 

normatively taught or presented in textbooks.   Learning sciences researchers 

have identified “informal” or “intuitive” forms of thinking that students may learn 

implicitly and outside of school (cf. Lave, Murtaugh, de la Rocha, 1984; Resnick, 

1987).  Production rules can represent such thinking patterns as illustrated by 

production #1 in Table 1, which represents an informal alternative to the formal 

approach of using algebraic equations like “8x = 40” (cf., Koedinger & Nathan, 

2004).   Production rules can also represent heuristic methods for discovering 

approaches to solutions (Polya, 1957). Production #2 in Table 1 does not suggest 

any particular operation per se, but characterizes how a good problem solver may 

think through a plan of action before selecting a particular operation or theorem to 

apply.  Non-traditional strategies  can be represented in production rules, as 

illustrated by #3 in Table 1, which characterizes the use of a graphical rather than 

symbolic strategy for solving an equation. 

The if-part of a production rule can help identify when the knowledge 

students acquire is not at the right level of generality.   For instance, production 

#4 in Table 1 is too specific—it represents when students can combine like terms 

in an equation when coefficients are present (e.g., 2x+3x -> 5x) but not when a 

coefficient is missing (e.g., x – 0.2x).  Alternatively, students sometimes acquire 

productions that are too general. Production #3 in Table 1 represents how students 

may learn to combine numbers by the operator between them (e.g., 2*3+4=x -> 
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6+4=x) without acquiring knowledge that prevents order of operations errors 

(e.g., x*3+4=10 -> x*7=10).  

The Cognitive Model and Model Tracing in Cognitive Tutors 

Developing Cognitive Tutor software involves the use of the ACT-R 

theory and empirical studies of learners to create a "cognitive model".  A 

cognitive model uses a production system to represent the multiple strategies 

students might employ as well as their typical student misconceptions. To take a 

simplified example from an Algebra equation solving problem, Figure 2 depicts 3 

productions that can apply in solving the equation 3(2X + 5) = 9. The production 

rule in Strategy 1 distributes (multiplies) “3” across the sum (2X + 5). The 

production rule in Strategy 2 divides both sides of the equation by “3.” The third 

rule is a “buggy” production that represents a misconception (cf., Matz, 1982) and 

fails to fully distribute the “3” across the sum (2X + 5).  

==INSERT FIGURE 2 HERE== 

By representing alternative strategies for the same goal, the Cognitive 

Tutor can follow different students down different problem solving paths of the 

students’ own choosing, using an algorithm called “model tracing.” Model tracing 

allows the Cognitive Tutor to trace each student’s problem-solving steps and 

provide individualized assistance that is just-in-time and sensitive to the students’ 

particular approach to a problem.  When a student performs a step, it is compared 

against the alternative next steps that the cognitive model generates.  There are 

three categories of response. For example, in Figure 2, if a student’s problem 

solving action matches either strategy 1 or strategy 2, the tutor highlights the step 

as correct and the student and tutor move on to the next step.  Second, if the 
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student action, like “6x + 5 = 9”, is matched by a buggy production the tutor 

highlights the step as incorrect and presents a feedback message, like "You need 

to multiply 5 by 3 also." This message is generated from a template attached to 

the buggy rule, with the variables “c” and “a” getting context-specific values from 

the matching of the production rule to the current situation.  Third, if the student 

performs a problem-solving action that does not match the action of any rule in 

the cognitive model, the tutor simply flags the action as an error, for instance, by 

making the text red and italicized.  

At any time the student can request a hint (e.g., by clicking on the “?” 

button shown in figure 1).  Again the tutor runs the model forward one step, 

selects one of the model productions that matches and presents advice text 

attached to the production. For instance, the hint associated with strategy 1 in 

Figure 2 will say “Distribute 3 across the parentheses” because the production 

variable “a” has the value 2 in this case. 

Knowledge Tracing in Cognitive Tutors 

ACT-R theory holds that knowledge is acquired gradually and the brain 

essentially keeps statistics on the frequency, recency, and utility of knowledge 

components including production rules (Anderson & Lebiere, 1998). The 

Knowledge Tracing algorithm in Cognitive Tutors monitors students’ gradual 

acquisition of production rules across problem solving activities. At each 

opportunity to apply a production rule in problem solving, the tutor updates its 

estimate of the probability the student knows the rule based on whether the 

student applies the rule correctly. Knowledge Tracing employs a Bayesian update 

and has been shown to predict students’ performance and posttest accuracy 
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(Corbett & Anderson, 1995). These probability estimates are displayed with "skill 

bars" in the computer tutor interface (see the lower right in Figure 1).  The 

Cognitive Tutor uses these estimates to determine when a student is ready to 

move on to the next section of the curriculum, thus adapting the pacing of 

instruction to individual student needs.  New problems are individually selected 

for students to provide more instruction and practice on the skills that have not yet 

been mastered (i.e., the ones for which the estimate is less than 95% that the 

student knows that skill).  

Why Production Rule Cognitive Models are Powerful 

A key feature of production rules is that they are modular, that is, they 

represent knowledge components that can be flexibly recombined.  It does not 

matter how a student reached the state of “3(2x + 5) = 9” shown in Figure 2.  It 

may have been the result, for instance, of translating a story problem into this 

equation or of simplifying a more complex equation (e.g., “3(2x + 5) + 10 = 19”) 

into this form. In any case, the production rule model is always applied to the 

current state of the problem regardless of how the student reached the current 

state. 

This modularity makes developing Cognitive Tutors more feasible as the 

production rules can be reused and recombined in different ways to follow 

students in a potentially infinite variety of problems within a course unit or even 

across courses (e.g., the equation solving cognitive model is used in the Geometry 

Cognitive Tutor as well as in Algebra).  In addition to facilitating development, 

modularity is a key scientific claim of ACT-R that yields empirically testable 

predictions.  For instance, knowledge will transfer from a learning activity to an 
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assessment activity to the extent that the kind and number of productions needed 

in the learning activity are also applicable in the assessment activity (Singley and 

Anderson, 1989). 

Model and Knowledge Tracing Implement Features of Human Tutoring 

Model and knowledge tracing algorithms implement key features of 

human tutoring and apprenticeship training (cf., Bloom, 1984; Collins, Brown & 

Newman, 1989; McArthur, Stasz, & Zmuidzinas,1990; Vygotsky, 1978).  The 

tutor gives the student a task and monitors how well the student is performing the 

task.  Model tracing is a form of such monitoring.  When the student strays too far 

from the tutor’s model of desired performance, the tutor may intervene and 

provide feedback.  If the student is stuck, the tutor can provide hints or 

performance assistance based on his or her own domain expertise.  The cognitive 

model provides the domain expertise or model of desired performance in a 

Cognitive Tutor.  After the student finishes the task, the tutor selects a next task 

based on the tutor’s sense of what the student knows and does not know.  

Knowledge tracing implements a method for determining, over time, what each 

student seems to knows and not know. 

Principles and Methods for Cognitive Tutor Design  

Cognitive Tutor Design Principles 

In 1995, we published a report on the status of the lessons learned from 

Cognitive Tutor development (Anderson,et al., 1995).  We described some 

general Cognitive Tutor design principles consistent with ACT-R and our 

research and development experience to that date.  Here we review the status of 

the six most frequently used of those principles.  Table 2 lists these six principles, 
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slightly rephrased based on our experiences since the 1995 paper.  We will briefly 

describe these principles and then provide more extended examples of two of 

them. 

==INSERT TABLE 2 HERE== 

1. Represent student competence as a production set 

The principle "represent student competence as a production set" suggests 

that the instructional designer guides design based on an analysis not of domain 

content per se, but of the way in which students think about the content. 

Acquiring competence in a domain is complex and we tend to be surprisingly 

unaware of the immense number of details and subtle decision capabilities we 

implicitly acquire on the way to expertise (Berry & Dienes, 1993). Complex tasks 

like reading become second nature to us with time and we forget or perhaps are 

never quite aware of the learning experiences and resulting knowledge changes 

that led to such competence.  Skinner (1968) estimated that to perform at 4th grade 

level in math, a student must acquire about 25,000 “chunks” of knowledge (p. 

17).   Production rules provide a way to represent such chunks of knowledge and 

decision capabilities.   

The modularity of production rules in a production set predicts that we can 

diagnose specific student weaknesses and focus instructional activities on 

improving these.   The context-specific nature of production rules means that 

instruction cannot be effective if it does not connect knowledge with its contexts 

of use.  Students need true problem solving experiences to learn the if-part of 

productions, the conditions for appropriate use of domain principles.  
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2. Provide instruction in a problem-solving context 

A fundamental assumption of ACT-R is that people learn by doing as the 

brain generalizes from one's explicit and implicit interpretations or "encodings" of 

one's experiences.  It is not the information or even the instructional activities 

students are given per se that matters, but how students experience and engage in 

such information and activities that determines what knowledge they construct 

from them. Thus, another principle in Anderson et al. (1995) was "provide 

instruction in the problem-solving context". This principle is consistent with the 

learning sciences finding that instruction should be situated in authentic tasks. 

3. Communicate the goal structure underlying the problem solving 

Among the formidable challenges facing novice problem solvers in 

complex problem solving is decomposing an initial problem statement into 

successive subgoals and keeping track of these subgoals (Singley, 1990). The 

underlying goal structure of a problem solution often remains hidden in 

traditional problem-solving representations. We have employed two methods for 

making the goal structure explicit. First, we develop interfaces that make the goal 

structure visible in the problem-solving interface (Collins et al., 1989). The most 

notable examples of this strategy are the geometry proof tutors (Koedinger & 

Anderson, 1993). A variety of studies have shown that explicit goal-structure 

scaffolding in the problem-solving interface can speed problem solving even in 

simple problems (Corbett & Trask, 2000) and result in better learning outcomes 

in more complex problem solving (Scheines and Sieg, 1994; Singley,1990). 

Second, the underlying goal structure of the problem can be communicated 

through help messages. Typically in model tracing tutors, the first level of help is 
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a description of the current goal in the context of the overall problem. Subsequent 

help messages advise on how to achieve the goal.  

4. Promote a correct and general understanding of the problem-solving 

knowledge 

In learning to problem solve, students construct production rules based on 

their own, perhaps idiosyncratic understanding or encoding of problem-solving 

activities and examples. For example novices have been shown to encode physics 

problems based on superficial features of the problems, rather than the underlying 

physical principles that apply (Chi, Feltovich and Glaser, 1981).  In geometry 

problem solving, students notoriously will conclude that angles are equal in 

measure because they look equal rather than because structurally they must be 

(Aleven & Koedinger, 2002). As illustrated above, students can acquire overly 

general productions that generate errors outside of the situations very similar to 

those in which they were acquired and overly specific rules that fail to transfer as 

expected across problem solving contexts. We have successfully deployed 

different strategies to help students generate a more general understanding and 

illustrate one below.  

5. Minimize working memory load that is extraneous to learning 

It has been documented that errors in complex problem solving can stem 

from loss of information from working memory (Anderson & Jeffries, 1988) and 

that high working memory load or “cognitive load” can impede learning (Sweller, 

1988). As a result, we have employed multiple tactics in cognitive tutors to 

reduce such load. Efforts to make the goal structure visible (principle 3) can help 

reduce working memory load. Another strategy is to simplify problem-solving 



Chapter 5  Cognitive tutors 

  Page 149 

actions in the interface that are irrelevant to the current learning goals. For 

example, the equation solver in our mathematics tutors has an auto-arithmetic 

mode in which students only indicate the algebraic operation to perform in each 

solution step, but they are not required to perform the arithmetic (Ritter and 

Anderson, 1995).  

Similarly, our programming cognitive tutors employ structure editors to 

reduce the working memory load of remembering surface syntax. Littman (1991) 

reports human tutor behavior that is similar to this strategy.  Human tutors avoid 

interrupting students and disrupting their working memory state to point out 

relatively minor errors that have little consequence for the overall problem 

solution.  

6. Provide immediate feedback on errors relative to the model of desired 

performance 

Studies have shown that human tutors tend to provide immediate feedback 

after each problem-solving step (Merrill, Reiser, Ranney & Trafton, 1992), 

although the feedback may be minimal (Lepper, Aspinwall, Mumme & Chabay, 

1990; Fox 1991) and provided only on “important” errors (Littman, 1991). But 

these studies don’t reveal the relative benefits of immediate feedback. In a study 

with the Lisp Cognitive Tutor immediate feedback led to significantly faster 

learning (Corbett & Anderson, 2001). Not only can immediate feedback make 

learning more efficient, but it can also be motivating for students (Schofield, 

1995). Mathan and Koedinger (2003) demonstrate benefits of providing 

immediate feedback relative to an “intelligent novice” model of desired 
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performance that allows for certain student errors and so appears like delayed 

feedback when compared to an error-free expert model of desired performance. 

Cognitive Tutor Meta-Design Principles 

The strengths of ACT-R and the Cognitive Tutor principles are that they 

are general and can apply in multiple domains.  However, these principles beg 

some higher-level curriculum design questions: What should students be 

learning? What problem-solving activities support that learning? What relevant 

knowledge do students bring with them? We need to design cognitive tutor 

activities that not only “work,” but work well within the curricular and social 

context of course objectives, teacher practices, and classroom use.  Here we 

abstract that experience in a set of Cognitive Tutor “Meta-Design” principles.  

1. Design with Instructors and Classroom Use from the Start 

An experienced classroom teacher plays many key roles in a Cognitive 

Tutor development project, contributing hard-won knowledge of the specific 

learning hurdles students face and tactics for helping students past those hurdles. 

An experienced teacher also plays essential roles in integrating Cognitive Tutor 

activities with other course activities. First, an experienced teacher will help guide 

the initial tutor development so that the tutor dovetails with other course 

activities. Second, an experienced teacher who is part of the design team is best 

positioned to take the technology into the classroom and provide informed 

observations on situations in which the classroom activities and tutor activities do 

not mesh. 
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2. Design the Full Course Experience 

We encountered a high-level curriculum compatibility problem in the 

ANGLE Geometry Proof Project (Koedinger & Anderson, 1993). Between the 

start of the project and the first classroom piloting, the school district had adopted 

a new curriculum that de-emphasized proofs and thus, it became difficult to 

integrate the tutor into the curriculum. The project teacher who was intimately 

familiar with the tutor’s curriculum objectives was more successful in integrating 

the tutor into the new curriculum than other teachers and obtained greater learning 

effects. In the aftermath of the ANGLE project, we have developed the full set of 

course activities in all our Cognitive Tutor math courses, including the course text 

and assignments for two related reasons. First, it spares the classroom teacher 

from having to figure out how to integrate the Cognitive Tutor activities into the 

course. Second, it enables us to develop a course that more fully emphasizes 

problem-based learning throughout. 

3. All Design Phases should be Empirically-Based 

The designer should collect student data to guide and test the application 

of principles, including (a) design experiments that guide initial development, (b) 

formative evaluations that analyze the successes and failures of problem-solving 

activities at a fine grain-size, and (c) summative evaluations that examine whether 

course-level curriculum objectives are being achieved.  A spectrum of empirical 

research methods are available from lower cost, lower reliability to higher cost, 

higher reliability (e.g., Koedinger, 2002).  
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Design Research Examples 

An important message of this chapter is that we not only need to make 

progress in better articulating theory and principles, but also in specifying 

associated empirical and analytic methods that better ensure these principles will 

be appropriately applied. 

The following three sections provide extended examples of each of these 

three classes of empirical research. The first section describes the use of design 

studies to guide application of the fifth principle, reduce working memory load. 

The second section describes the use of design studies to guide application of the 

fourth principle, promote a general understanding. The third section describes 

summative evaluations of the Cognitive Tutor Algebra course. 

Design Research Guides Reduction of Working Memory Load 

In addition to the strategies discussed above to “minimize working 

memory load”, we employed the strategy to design instruction that builds on 

students’ prior knowledge  (cf., Bransford, Brown, & Cocking, 1999).  When 

instruction makes connections to what students already know, they need less 

cognitive load to process, understand, and integrate new knowledge into long-

term memory.   

While building on prior knowledge is a more specific strategy for 

minimizing working memory load, how do we know what prior knowledge 

students have?  Sometimes theoretical analysis of domain content is used to 

predict prior knowledge under the assumption that smaller component tasks are 

more likely to tap prior knowledge than larger whole tasks (cf., Van Merrienboer, 

1997). However, while smaller tasks typically involve fewer knowledge 
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components, they are not always simpler for students. It is not the surface form of 

tasks that determine how accessible they are to students. Instead, it is the internal 

mental representations that students acquire and use in task performance that 

determines what will be simple or not.  Thus, to identify what prior knowledge 

students have and which tasks are most likely to tap prior knowledge, it is not 

sufficient to analyze the content domain.  Instead it is critical to study how 

students actually perform on tasks – to see student thinking as it really is, not as a 

content analysis might assume it to be. 

Consider the three problems shown below, a story problem, a word 

problem, and an equation, all with the same underlying quantitative structure and 

the same solution.   

Story Problem: As a waiter, Ted gets $6 per hour.  One night he made 

$66 in tips and earned a total of $81.90.  How many hours did Ted 

work? 

Word Problem: Starting with some number, if I multiply it by 6 and then 

add 66, I get 81.90.  What number did I start with? 

Equation:  x * 6 + 66 = 81.90 

Which would be most difficult for high school students in a first year algebra 

course?  Nathan & Koedinger (2000) discussed results of surveys of mathematics 

teachers on a variation of this question.  The survey respondents tended to predict 

that such story problems would be most difficult and such equations would be 

easiest.  Typical justifications for this prediction include that the story problem 

requires more reading or that the way the story problem is solved is by translating 

to the equation. 
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In contrast, Koedinger & Nathan (2004) found that students perform best at 

the story and word problems (70% and 61% respectively) like these and worst at 

the analogous equations (42%).  Clearly many students were not solving the story 

and word problems using equation solving.  Instead they used alternative informal 

strategies like guess-and-test and "unwinding", working backwards from the 

result, inverting operations to find the unknown starting quantity.  Students had 

difficulty in comprehending equations and, when they did succeed in 

comprehending, they often had difficulty in reliably executing the equation 

solving strategy.  

This result is important within the algebra domain.  It indicates that if we want 

to create instruction that builds on prior knowledge, we should make use of the 

fact that beginning algebra students have quantitative reasoning skills that can be 

tapped through verbal or situational contexts.  Unlike many textbooks that teach 

equation solving prior to story problem solving (Nathan, Long, & Alibali, 2002), 

it may be better to use story problem situations and verbal descriptions first to 

help students informally understand quantitative relationships before moving to 

more abstract processing of formal representations. 

This study illustrates why we advocate the mantra “the student is not like 

me”. We need empirical methods to see past our biases or “expert blind spot” to 

what students are really like. 

Table 3 further illustrates why it is important to use empirical methods to 

determine when and how to employ a principle.  Using problem situations to 

build on prior knowledge and reduce working memory load will not work if those 

problem situations are not familiar.  In our development of Cognitive Tutor Math 
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6 (Koedinger, 2002), we used a Difficulty Factors Assessment to find which kinds 

of problem situations make problems easier for students and which kinds do not. 

Table 3 illustrates different content areas in middle school math where we 

compared concrete story problem situations with abstract context-free problems.  

==INSERT TABLE 3 HERE== 

Table 3 shows 6th graders' average percent correct on multiple pre-test 

items in each content area. In three of the areas, the problem situation consistently 

facilitates performance significantly above the abstract problem. These are 

decimal place value, decimal arithmetic, and fraction addition.  In data analysis, 

the situation facilitated performance on a global interpretation task, but not on a 

local interpretation task.  In the area of factors and multiples, the situation 

reduced performance. 

Thus using situations to build on prior knowledge may not be effective for 

concepts and procedures related to factors and multiples unless situations can be 

found that are easier to understand than abstract problems. While one might still 

want to use such a problem situation as motivation for learning, given this data, it 

does not appear that such a situation will provide a student with an easier, less 

cognitively taxing access to understanding of the domain content.  

Reflection Promotes General Understanding 

One well-researched approach to promoting a correct and general 

encoding is called “self-explanation” whereby students explain to themselves 

steps in problem solutions (e.g., Chi, de Leeuw, Chiu, & Lavancher, 1994). 

Aleven and Koedinger (2002) implemented a version of self-explanation in 

Cognitive Tutor Geometry and experimented with its effectiveness. Figure 3 
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illustrates the “explanation by reference” approach employed whereby students 

provided explanations for problem solving steps by making reference to geometry 

rules or reasons in an on-line glossary.  Students could either type the name of the 

rule or select it from the glossary.  This form of explanation is different from the 

speech-based explanations in most prior experiments on self-explanation, but has 

the benefit of the explanations being machine readable without the need to 

implement natural language understanding.   

Prior Difficulty Factors Assessments had indicated that students were 

better able to perform a problem-solving step, like determine that angle ARN in 

Figure 3 is equal to 43.5 degrees, than to explain that step by referring to the 

“Alternate Interior Angles” rule.  One reason for this difference is that students’ 

prior knowledge includes over-generalized production rules like “if an angle looks 

equal to another, then it is” that can provide correct answers to steps, but without 

an understanding of when such steps are justified and why. Such over-generalized 

productions may result from shallow encoding and learning.  According to 

Aleven & Koedinger’s ACT-R interpretation, self-explanation promotes more 

general encoding because students think more deliberately, with greater explicit 

reflection, about the verbal declarative representation of domain rules.  This 

deliberate reflection helps identify key features of the domain rules and thus 

improves the accuracy of the implicit inductive process of “compiling” (a form of 

learning) production rules from examples and visual input.  Indeed, Aleven and 

Koedinger (2002) found that students using the self-explanation version of 

Cognitive Tutor Geometry were not only better able to provide accurate 

explanations, but learned the domain rules with greater understanding such that 



Chapter 5  Cognitive tutors 

  Page 157 

they could better transfer to novel problems and avoid shallow inferences, like the 

“looks equal” production illustrated above. 

Summative Field Study Evaluations and Classroom Observations 

We originally assessed Cognitive Tutor Algebra in experimental field 

studies in city schools in Pittsburgh and Milwaukee, replicated over 3 different 

school years.  The assessments used in these field studies targeted both 1) higher 

order conceptual achievement as measured by performance assessments of 

problem solving and representation use and 2) basic skills achievement as 

measured by standardized test items, for instance, from the math SAT.  In 

comparison with traditional algebra classes at the same and similar schools, we 

have found that students using Cognitive Tutor Algebra perform 15-25% better 

than control classes on standardized test items and 50-100% better on problem 

solving & representation use (Koedinger, et al., 1997; Corbett, Koedinger, & 

Hadley, 2001; also see http://www.carnegielearning.com/results/reports). More 

recent studies have continued to confirm the validity of the approach. For 

example, the Moore (Oklahoma) Independent School District conducted a within-

teacher experiment (Morgan & Ritter,2002). Eight teachers at four junior high 

schools taught some of their classes using Cognitive Tutor Algebra I and others 

using their traditional textbook.  On the ETS End-of-Course Algebra exam, 

students taking the Cognitive Tutor curriculum scored significantly higher than 

control students.  Cognitive Tutor students also earned higher course grades and 

had more positive attitudes towards mathematics. 

The deployment of educational technology in the classroom has an impact 

beyond learning outcomes. Following the observations of Schofield, Evans-
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Rhodes, & Huber (1990) and Wertheimer (1990), we have also observed the 

impact of the use of Cognitive Tutor Algebra on changes in classroom social and 

motivational processes (Corbett et al., 2001).  Visitors to these classrooms often 

comment on how engaged students are. Cognitive Tutor Algebra may enhance 

student motivation for a number of different reasons.  First, authentic problem 

situations make mathematics more interesting, sensible, or relevant.  Second, 

students on the average would rather be doing than listening, and the incremental 

achievement and feedback within Cognitive Tutor Algebra problems provide a 

video-game-like appeal.  Third, the safety net provided by the tutor reduces 

potential for frustration and provides assistance on errors without social stigma.  

Finally, the longer-term achievement of mastering the mathematics is 

empowering. 

Conclusions and Future Work 

Human tutoring is an extremely effective and enjoyable way to learn.  But, 

buying one computer per student is a lot more cost effective than hiring a teacher 

for every student.  Before a computer program can function as a tutor, it has to be 

able to do several key things that human tutors can do: 1) use domain knowledge 

to solve problems and reason as we want students to do; 2) have knowledge of 

typical student, misconceptions, relevant prior informal knowledge, and learning 

trajectories; 3) follow student reasoning step by step and understand when and 

where students reveal a lack of knowledge or understanding; 4) provide 

appropriate scaffolding, feedback and assistance to students when they need it and 

in the context of that need; 5) adapt instruction to individual student needs based 

on an on-going assessment of those needs.  The cognitive model, model tracing 
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and knowledge tracing algorithms of the Cognitive Tutor architecture provide 

these key behaviors of good tutoring. 

Cognitive Tutors and ACT-R are one manifestation of the many advances 

in cognitive psychology and instructional design made by learning scientists.  

Cognitive Tutors implement a decidedly simple form of tutoring.  More 

sophisticated tutoring strategies can be imagined (cf., Collins et al., 1989) and 

some of these strategies, such as natural language tutorial dialog, are being 

implemented in increasingly practical forms (e.g.,  Jordan, Rosé, & VanLehn, 

2001; Wiemer-Hastings, Wiemer-Hastings,  & Graesser, 1999).  Experimental 

studies are testing whether such added sophistication leads to increased student 

learning (e.g., Aleven, Popescu, & Koedinger, 2003).  There is also substantial 

research on whether even simpler forms of instruction, like worked examples of 

problem solutions, are as effective or more effective than more complex forms 

(e.g., Clark & Mayer, 2003).  

Cognitive Tutor research is actively advancing along a number of 

dimensions that build off of the prior work demonstrating the value of Cognitive 

Tutors for delivering individual tutoring to aid the acquisition of cognitive skills.  

A major current research topic is tutoring meta-cognitive skills in addition to 

cognitive skills, including self-explanation (Aleven & Koedinger, 2002), error 

detection and correction (Mathan & Koedinger, 2003), and learning and help-

seeking skills (Aleven, McLaren, Roll, & Koedinger,  2004).  Cognitive Tutors 

are also being deployed to support required state testing and school accountability 

(http://assistment.org) and authoring tools are being created to speed Cognitive 

Tutor development (http://ctat.pact.cs.cmu.edu). Finally, Cognitive Tutors are 
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being employed as research platforms to allow rigorous experimental tests of 

learning principles “in vivo”, that is, in classrooms with real students and real 

courses. (http://learnlab.org). 
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1 In this chapter we will often refer to such performance situations as “problems” or 

“problem-solving activities” though we believe that many of the ideas about tutoring expressed in 

this chapter are relevant to performances that are not usually described as problem solving, like 

writing an essay, making a scientific discovery, communicating in a foreign language. 



Figures and Tables

Figure 1. A screen shot of a problem solving activity within Cognitive Tutor

Algebra.  Students are presented a problem situation and use various tools, like the

Worksheet, Grapher, and Solver shown here, to analyze and model the problem

situation.  As they work, “model tracing” is used to provide just-in-time feedback or

on-demand solution-sensitive hints through the Messages window.  The results of

“knowledge tracing” are displayed in the skills chart in the top center.



Figure 2. How model tracing uses production rules to trace different possible actions

students may take. Here the student has reached the state “3(2x + 5) = 9”.  The "?"

at the top indicates that these production rules work no matter how the student

reached this state.  The figure shows how the production rules apply to generate

three possible next steps. Attached to the production rules are feedback messages

for common errors or next-step hints that students can request if they are stuck.



Figure 3. A screen image of Cognitive Tutor Geometry with support for self-

explanation of solution steps.



Table 1. Example Production Rules

Production Rules in English Example of its application
1. Correct production possibly acquired implicitly
IF the goal is to find the value of quantity Q

  and Q divided by Num1 is Num2

THEN find Q by multiplying Num1 and Num2.

To solve “You have some money
that you divide evenly among 8
people and each gets 40” find the
original amount of money by
multiplying 8 and 40.

2. Correct production that does heuristic planning

IF the goal is to prove two triangles congruent

and the triangles share a side

THEN check for other corresponding sides or angles that
may congruent.

Try to prove triangles ABC and
DBC are congruent by checking
whether any of the corresponding
angles, like BCA and BCD, or any
of the corresponding sides, like AB
and DB, are congruent.

3. Correct production for a non-traditional strategy
IF the goal is to solve an equation in X

THEN graph the left and right sides of the equation

and find the intersection point(s).

Solve equation sin x = x2 by
graphing both sin x and x2 and
finding where the lines cross.

4. Correct but overly specific production
IF “ax + bx” appears in an expression and c = a + b
THEN replace it with “cx”

Works for “2x + 3x”
but not for “x + 3x”

5. Incorrect, overly general production
IF “Num1 + Num2” appears in an expression
THEN replace it with the sum

Leads to order of operations error:
“x * 3 + 4”  is rewritten as “x * 7”



Table 2. Six Instructional Design Principles for Cognitive Tutors

1. Represent student competence as a production set
2. Provide instruction in a problem-solving context
3. Communicate the goal structure underlying the problem solving
4. Promote a correct and general understanding of the problem-solving knowledge
5. Minimize working memory load that is extraneous to learning
6. Provide immediate feedback on errors relative to the model of desired

performance



Table 3. Comparisons of Situational and Abstract Problems in Five Content Areas

Decimal place
value

Decimal arith Fraction addition Data interp-global

Situation

Show 5
different ways
that you can
give Ben $4.07.
[A place value
table was
provided.]

You had $8.72.
Your
grandmother
gave you $25
for your
birthday.  How
much money do
you have now?

Mrs. Jules bought
each of her
children a
chocolate bar.
Jarren ate 1/4 of a
chocolate bar and
Alicia ate 1/5 of a
chocolate bar.
How much of a
chocolate bar did
they eat
altogether?

[2 scatterplots
given]
Do students sell
more boxes of
Candy Bars or
Cookies as the
months pass?

% correct 61% 65% 32% 62%

Abstract
List 5 different
ways to show
the amount
4.07. [Place
value table
given.]

Add: 8.72 + 25 Add:  1/4 + 1/5 [Scatterplots given]
Are there more
Moops per Zog in
the Left graph or
the Right graph?

% correct 20% 35% 22% 48%
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