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Acknowledgments for Todayʼs Lecture"
•  Cilk lectures, http://supertech.csail.mit.edu/cilk/ 
•  COMP 322 Lecture 3 handout 
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Computation Graphs for HJ Programs"
•  A Computation Graph (CG) is an abstract data 

structure that captures the dynamic execution of an 
HJ program 

•  The nodes in the CG are steps in the program’s 
execution 
— A step is a sequential subcomputation of a task that 
contains no continuation points 

— When a worker starts executing a step, it can execute 
the entire step without interruption 

— Steps need not be maximal i.e., it is acceptable to 
split a step into smaller steps if so desired 
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Example HJ Program Decomposed into 
Non-Maximal Steps (v1 … v23)"

// Task T1 
v1; v2; 
finish { 
  async { 
    // Task T2 
    v3; 
    finish { 
      async { v4; v5; } // Task T3 
      v6;  
      async { v7; v8; } // Task T4 
      v9; 
    } // finish 
    v10; v11; 

// Task T2 (contd) 
    async { v12; v13;  
             v14; } // Task T5 
    v15; 
  } // end of task T2 
  v16; v17; // back in Task T1 
} // finish 
v18; v19; 
finish { 
  async {  
    // Task T6 
    v20; v21; v22; } 
} 
v23; 
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Computation Graph Edges"
•  CG edges represent ordering constraints 
•  There are three kinds of CG edges of interest in an 

HJ program with finish &async operations 
1. Continue edges define sequencing of steps within a 

task 
2. Spawn edges connect parent tasks to child async 

tasks 
3. Join edges connect async tasks to their 

Immediately Enclosing Finish (IEF) operations 
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Computation Graph for previous HJ Example"

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Observation: Step v16 can potentially execute in parallel with steps v3 … v15 
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Dependences in a Computation Graph"
•  Given edge (A,B) in a CG, node B can only start execution after 

node A has completed 
•  We say that node Y depends on node X if there is a path of 

directed edges from X to Y in the CG 
— Also referred to as a “dependence from node X to node Y” or a 

“dependence from node Y on node X” 

•  Nodes X and Y can potentially execute in parallel if there is no 
dependence from X to Y or from Y to X 

•  Dependence is a transitive relation 
— if B depends on A and C depends on B, then C must depend on A 

•  All computation graphs must be acyclic 
— It is not possible for a node to depend on itself 

•  Computation graphs are examples of directed acyclic graphs 
(dags) 
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Complexity Measures for Computation Graphs"
Define 
•  time(N) = execution time of node N 
•  WORK(G) = sum of time(N), for all nodes N in CG G 

— WORK(G) is the total amount of work to be 
performed in G 

•  CPL(G) = length of a longest path in CG G, when 
adding up the execution times of all nodes in the 
path 
— Such paths are called critical paths 
— CPL(G) is the length of these paths (critical path 
length) 
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Example"
•  Assume time(N) = 1 for all nodes in this graph 

WORK(G) = 18 
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Example (contd)"
•  Assume time(N) = 1 for all nodes in this graph 

CPL(G) = 9 
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Lower Bounds on Execution Time"
•  tP = execution time of computation graph on P 

processors 
•  Observations 

— t1 = WORK(G) 
— t∞ = CPL(G) 

•  Lower bounds 
— Capacity bound: tP  ≥ WORK(G)/P 
— Critical path bound: tP  ≥ CPL(G) 

•  Putting it together 
— tP  ≥ max(WORK(G)/P, CPL(G)) 
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Theorem [Graham ’66]. Any 
greedy scheduler achieves 

tP ≤ WORK(G)/P + CPL(G). 

Greedy-Scheduling Theorem (Upper Bound)"

Proof sketch.  
# complete steps ≤ WORK(G)/P, since 

each complete step performs P 
work. 

# incomplete steps ≤ CPL(G), since 
each incomplete step reduces the 
span of the unexecuted dag by 1.  
■ 

P = 3 
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Parallelism (“Ideal Speedup”)"

TP  depends on the schedule of 
computation graph nodes on the 
processors 
 Two different schedules can 
yield different values of TP  for 
the same P  

For convenience, define parallelism 
(or ideal speedup) as the ratio, 
WORK(G)/CPL(G) = T1/T∞ 

Parallelism is independent of P, 
and only depends on the 
computation graph 
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HJ Abstract Performance Metrics"
•  Serial code sequence 

— Dynamic sequence of instructions with no parallel 
operations 

•  Calls to perf.addLocalOps() 
— Programmer inserts calls of the form, perf.addLocalOps(N), 

inside a step to indicate execution of N application-specific 
abstract operations e.g., floating-point ops, stencil ops, data 
structure ops, etc. 

— Multiple calls add to the execution time of the step 

•   -perf=true runtime option 
— If an HJ program is executed with this option, abstract 

metrics are printed at end of program execution with 
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G) 


