
COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs and
Abstract Performance Metrics

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 3 14 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Cilk lectures, http://supertech.csail.mit.edu/cilk/
•  COMP 322 Lecture 3 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

Computation Graphs for HJ Programs"
•  A Computation Graph (CG) is an abstract data

structure that captures the dynamic execution of an
HJ program

•  The nodes in the CG are steps in the program’s
execution
— A step is a sequential subcomputation of a task that
contains no continuation points

— When a worker starts executing a step, it can execute
the entire step without interruption

— Steps need not be maximal i.e., it is acceptable to
split a step into smaller steps if so desired

COMP 322, Spring 2011 (V.Sarkar)	

4

Example HJ Program Decomposed into
Non-Maximal Steps (v1 … v23)"

// Task T1
v1; v2;
finish {
 async {
 // Task T2
 v3;
 finish {
 async { v4; v5; } // Task T3
 v6;
 async { v7; v8; } // Task T4
 v9;
 } // finish
 v10; v11;

// Task T2 (contd)
 async { v12; v13;
 v14; } // Task T5
 v15;
 } // end of task T2
 v16; v17; // back in Task T1
} // finish
v18; v19;
finish {
 async {
 // Task T6
 v20; v21; v22; }
}
v23;

COMP 322, Spring 2011 (V.Sarkar)	

5

Computation Graph Edges"
•  CG edges represent ordering constraints
•  There are three kinds of CG edges of interest in an

HJ program with finish &async operations
1. Continue edges define sequencing of steps within a

task
2. Spawn edges connect parent tasks to child async

tasks
3. Join edges connect async tasks to their

Immediately Enclosing Finish (IEF) operations

COMP 322, Spring 2011 (V.Sarkar)	

6

Computation Graph for previous HJ Example"

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Observation: Step v16 can potentially execute in parallel with steps v3 … v15

COMP 322, Spring 2011 (V.Sarkar)	

7

Dependences in a Computation Graph"
•  Given edge (A,B) in a CG, node B can only start execution after

node A has completed
•  We say that node Y depends on node X if there is a path of

directed edges from X to Y in the CG
— Also referred to as a “dependence from node X to node Y” or a

“dependence from node Y on node X”

•  Nodes X and Y can potentially execute in parallel if there is no
dependence from X to Y or from Y to X

•  Dependence is a transitive relation
— if B depends on A and C depends on B, then C must depend on A

•  All computation graphs must be acyclic
— It is not possible for a node to depend on itself

•  Computation graphs are examples of directed acyclic graphs
(dags)

COMP 322, Spring 2011 (V.Sarkar)	

8

Complexity Measures for Computation Graphs"
Define
•  time(N) = execution time of node N
•  WORK(G) = sum of time(N), for all nodes N in CG G

— WORK(G) is the total amount of work to be
performed in G

•  CPL(G) = length of a longest path in CG G, when
adding up the execution times of all nodes in the
path
— Such paths are called critical paths
— CPL(G) is the length of these paths (critical path
length)

COMP 322, Spring 2011 (V.Sarkar)	

9

Example"
•  Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

COMP 322, Spring 2011 (V.Sarkar)	

10

Example (contd)"
•  Assume time(N) = 1 for all nodes in this graph

CPL(G) = 9

COMP 322, Spring 2011 (V.Sarkar)	

11

Lower Bounds on Execution Time"
•  tP = execution time of computation graph on P

processors
•  Observations

— t1 = WORK(G)
— t∞ = CPL(G)

•  Lower bounds
— Capacity bound: tP ≥ WORK(G)/P
— Critical path bound: tP ≥ CPL(G)

•  Putting it together
— tP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Spring 2011 (V.Sarkar)	

12

Theorem [Graham ’66]. Any
greedy scheduler achieves

tP ≤ WORK(G)/P + CPL(G).

Greedy-Scheduling Theorem (Upper Bound)"

Proof sketch.
complete steps ≤ WORK(G)/P, since

each complete step performs P
work.

incomplete steps ≤ CPL(G), since
each incomplete step reduces the
span of the unexecuted dag by 1.
■

P = 3

COMP 322, Spring 2011 (V.Sarkar)	

13

Parallelism (“Ideal Speedup”)"

TP depends on the schedule of
computation graph nodes on the
processors
 Two different schedules can
yield different values of TP for
the same P

For convenience, define parallelism
(or ideal speedup) as the ratio,
WORK(G)/CPL(G) = T1/T∞

Parallelism is independent of P,
and only depends on the
computation graph

COMP 322, Spring 2011 (V.Sarkar)	

14

HJ Abstract Performance Metrics"
•  Serial code sequence

— Dynamic sequence of instructions with no parallel
operations

•  Calls to perf.addLocalOps()
— Programmer inserts calls of the form, perf.addLocalOps(N),

inside a step to indicate execution of N application-specific
abstract operations e.g., floating-point ops, stencil ops, data
structure ops, etc.

— Multiple calls add to the execution time of the step

•  -perf=true runtime option
— If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

