
COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Futures -- Tasks with
Return Values

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 4 19 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  COMP 322 Lecture 4 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

HJ Abstract Performance Metrics
(Recap)"

•  Serial code sequence
— Dynamic sequence of instructions with no parallel

operations

•  Calls to perf.addLocalOps()
— Programmer inserts calls of the form, perf.addLocalOps(N),

inside a step to indicate execution of N application-specific
abstract operations e.g., floating-point ops, stencil ops, data
structure ops, etc.

— Multiple calls add to the execution time of the step

•  -perf=true runtime option
— If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

COMP 322, Spring 2011 (V.Sarkar)	

4

Question: What should be included in
perf.addLocalOps()? "

•  Answer: It depends. We will tell you what to count in
HW3, but here’s the general idea …

•  We'll say that a cost function Cost(n) is “order f(n)”,
or simply “O(f (n))” (read “Big-O of f (n))”) if
— Cost-X(n) < factor * f (n), for sufficiently large n,
for some constant factor

•  Examples:
— Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
— Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
— Cost-C(n) = 2n Cost-C is O(2n)

COMP 322, Spring 2011 (V.Sarkar)	

5

Famous "Complexity Classes""
•  O (1) constant-time (head, tail)
•  O (log n) logarithmic (binary search)
•  O (n) linear (vector multiplication)
•  O (n * log n) "n logn" (sorting)
•  O (n2) quadratic (matrix addition)
•  O (n3) cubic (matrix multiplication)
•  nO(1) polynomial (…many! …)
•  2O(n) exponential (guess password)

COMP 322, Spring 2011 (V.Sarkar)	

6

Question: What should be included in
perf.addLocalOps()? "

•  Focus on key metric of interest in your algorithm
•  Don’t count operations that may be incidental

properties of your implementation
— e.g., don’t count operations that may not be
needed in a better engineered implementation

•  Since big-O analysis does not care about differences
within a constant factor, you can just a unit 1 as a
stand-in for a constant number of operations

COMP 322, Spring 2011 (V.Sarkar)	

7

HJ Futures: Tasks with Return Values"

async<T> { <Stmt-Block> }"
•  Creates a new child task that

executes Stmt-Block, which
must terminate with a return
statement returning a value of
type T"

•  Async expression returns a
reference to a container of type
future<T>, and parent task
immediately to operation
following the async"

•  Values of type future<T> can
only be assigned to final
variables"

Expr.get()"
  Evaluates Expr, and blocks if

Exprʼs value is unavailable"
  Expr must be of type

future<T>"
  Return value from Expr.get()

will then be T"
  Unlike finish which waits for all

tasks in the finish scope, a get
operation only waits for the
specified async expression"

COMP 322, Spring 2011 (V.Sarkar)	

8

Example: Two-way Parallel Array Sum  
using Future Tasks"

Why are these semicolons needed?

COMP 322, Spring 2011 (V.Sarkar)	

9

Comparison of Future Task and Regular
Async Versions"

•  Future task version initializes two references to
future objects, sum1 and sum2, and both are
declared as final

•  No finish construct needed in this example
— Instead parent task waits for child tasks by performing

sum1.get() and sum2.get()

•  Guaranteed absence of race conditions in Future Task
example
— No race on sum because it is a local variable in tasks T1,

T2, T3
— No race on sum1 and sum2 because of blocking-read

semantics

COMP 322, Spring 2011 (V.Sarkar)	

10

Future Task Declarations and Uses"
•  Variable of type future<T> is a reference to a future object

— Container for return value of T from future task
— The reference to the container is also known as a handle

•  Two operations that can be performed on variable V1 of type
future<T1> (assume that type T2 is a subtype of type T1):
—  Assignment: V1 can be assigned value of type future<T2>
—  Blocking read: V1.get() waits until the future task referred

to by V1 has completed, and then propagates the return
value

•  Future task body must start with a type declaration,
async<T1>, where T1 is the type of the task's return value

•  Future task body must consist of a statement block enclosed in
{ } braces, terminating with a return statement

COMP 322, Spring 2011 (V.Sarkar)	

11

Computation Graph Extensions for
Future Tasks"

•  Since a get() is a blocking operation, it must also be treated as a
continuation
— get()’s must occur on boundaries of CG nodes/steps
— May require splitting a statement into sub-statements e.g.,

–  14: int sum = sum1.get() + sum2.get();
 can be split into three sub-statements

–  14a int temp1 = sum1.get();
–  14b int temp2 = sum2.get();
–  14c int sum = temp1 + temp2;

•  Spawn edge connects parent task to child future task, as before
•  Join edge connects end of future task to Immediately Enclosing

Finish (IEF), as before
•  Additional join edges are inserted from end of future task to

each get() operation on future object

COMP 322, Spring 2011 (V.Sarkar)	

12

Computation Graph for Two-way Parallel
Array Sum using Future Tasks"

COMP 322, Spring 2011 (V.Sarkar)	

13

Why must Future References be
declared as final?"

static future<int> f1=null;

static future<int> f2=null;

void main(String[] args) {

 f1 = async<int> {return a1();};

 f2 = async<int> {return a2();};

}

int a1() { // Task T1
 while (f2 == null); // spin loop
 return f2.get(); //T1 waits for T2
}

int a2() { // Task T2
 while (f1 == null); // spin loop
 return f1.get(); //T2 waits for T1
}

"This situation cannot arise in HJ because f1 and f2 must be final"
•  Final declaration ensures that variable (handle) cannot be

modified after initialization

WARNING: spin loops are an example of bad parallel programming
practice in application code (they should only be used by expert
systems programmers, and even then sparingly)

cyclic wait condition

COMP 322, Spring 2011 (V.Sarkar)	

14

Future Tasks with void Return Type"
•  Key difference between

regular async’s and future
tasks is that future tasks
have a future<T> return
value

•  We can get an
intermediate capability by
setting T=void as shown

•  Can be useful if a task
needs to synchronize on
another task, but doesn't
need to use future object
for communicating a
return value

sum1 = 0; sum2 = 0; // Task T1
// Assume that sum1 & sum2 are fields
final future<void> a1 = async<void> {
 for (int i=0; i < X.length/2; i++)
 sum1 += X[i]; // Task T2
};
final future<void> a2 = async<void> {
 for (int i=X.length/2; i < X.length; i++)
 sum2 += X[i]; // Task T3
};
//Task T1 waits for Tasks T2 and T3
a1.get(); a2.get();
int sum = sum1 + sum2;

COMP 322, Spring 2011 (V.Sarkar)	

15

Using Future Tasks to generate  
Computation Graph CG3 from Homework 2"

// NOTE: return statement is optional
when return type is void

final future<void> A = async<void>
{ . . . ; return;}

final future<void> B = async<void>
{ A.get(); . . . ; return;}

final future<void> C = async<void>
{ A.get(); . . . ; return;}

final future<void> D = async<void>
{ B.get(); C.get(); . . . ; return;}

final future<void> E = async<void>
{ C.get(); . . . ; return;}

final future<void> F = async<void>
{ D.get(); E.get(); . . . ; return;}

A

B C

D E

F

Computation Graph CG3

NOTE: this is not an
acceptable solution for
Homework~2 since this
code uses future tasks!

