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Acknowledgments for Todayʼs Lecture"
•  COMP 322 Lecture 4 handout 
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HJ Abstract Performance Metrics 
(Recap)"

•  Serial code sequence 
— Dynamic sequence of instructions with no parallel 

operations 

•  Calls to perf.addLocalOps() 
— Programmer inserts calls of the form, perf.addLocalOps(N), 

inside a step to indicate execution of N application-specific 
abstract operations e.g., floating-point ops, stencil ops, data 
structure ops, etc. 

— Multiple calls add to the execution time of the step 

•   -perf=true runtime option 
— If an HJ program is executed with this option, abstract 

metrics are printed at end of program execution with 
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G) 



COMP 322, Spring 2011 (V.Sarkar)	

4 

Question: What should be included in 
perf.addLocalOps()? "

•  Answer: It depends. We will tell you what to count in 
HW3, but here’s the general idea … 

•  We'll say that a cost function Cost(n) is “order f(n)”, 
or simply “O(f (n))” (read “Big-O of f (n))”) if 
— Cost-X(n) < factor * f (n), for sufficiently large n, 
for some constant factor 

•  Examples: 
— Cost-A(n) = 2*n3 + n2 + 1  Cost-A is O(n3) 
— Cost-B(n) = 3*n2 + 10   Cost-B is O(n2) 
— Cost-C(n) = 2n    Cost-C is O(2n) 
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Famous "Complexity Classes""
•  O (1)   constant-time        (head, tail) 
•  O (log n)   logarithmic      (binary search) 
•  O (n)   linear    (vector multiplication) 
•  O (n * log n)  "n logn"                (sorting) 
•  O (n2)   quadratic      (matrix addition) 
•  O (n3)   cubic    (matrix multiplication) 
•  nO(1)   polynomial         (…many! …) 
•  2O(n)   exponential (guess password) 
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Question: What should be included in 
perf.addLocalOps()? "

•  Focus on key metric of interest in your algorithm 
•  Don’t count operations that may be incidental 

properties of your implementation  
— e.g., don’t count operations that may not be 
needed in a better engineered implementation  

•  Since big-O analysis does not care about differences 
within a constant factor, you can just a unit 1 as a 
stand-in for a constant number of operations 
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HJ Futures: Tasks with Return Values"

async<T> { <Stmt-Block> }"
•  Creates a new child task that 

executes Stmt-Block, which 
must terminate with a return 
statement returning a value of 
type T"

•  Async expression returns a 
reference to a container of type 
future<T>, and parent task 
immediately to operation 
following the async"

•  Values of type future<T> can 
only be assigned to final 
variables"

Expr.get()"
  Evaluates Expr, and blocks if 

Exprʼs value is unavailable"
  Expr must be of type 

future<T>"
  Return value from Expr.get() 

will then be T"
  Unlike finish which waits for all 

tasks in the finish scope, a get 
operation only waits for the 
specified async expression"
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Example: Two-way Parallel Array Sum  
using Future Tasks"

Why are these semicolons needed? 
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Comparison of Future Task and Regular 
Async Versions"

•  Future task version initializes two references to 
future objects, sum1 and sum2, and both are 
declared as final 

•  No finish construct needed in this example 
— Instead parent task waits for child tasks by performing 

sum1.get() and sum2.get() 

•  Guaranteed absence of race conditions in Future Task 
example 
— No race on sum because it is a local variable in tasks T1, 

T2, T3 
— No race on sum1 and sum2 because of blocking-read 

semantics  
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Future Task Declarations and Uses"
•  Variable of type future<T> is a reference to a future object 

— Container for return value of T from future task 
— The reference to the container is also known as a handle  

•  Two operations that can be performed on variable V1 of type 
future<T1> (assume that type T2 is a subtype of type T1): 
—  Assignment: V1 can be assigned value of type future<T2> 
—  Blocking read: V1.get() waits until the future task referred 

to by V1 has completed, and then propagates the return 
value 

•  Future task body must start with a type declaration, 
async<T1>, where T1 is the type of the task's return value 

•  Future task body must consist of a statement block enclosed in 
{ } braces, terminating with a return statement 
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Computation Graph Extensions for 
Future Tasks"

•  Since a get() is a blocking operation, it must also be treated as a 
continuation 
— get()’s must occur on boundaries of CG nodes/steps 
— May require splitting a statement into sub-statements e.g., 

–  14:    int sum = sum1.get() + sum2.get(); 
 can be split into three sub-statements 

–  14a    int temp1 = sum1.get(); 
–  14b    int temp2 = sum2.get(); 
–  14c    int sum = temp1 + temp2;  

•  Spawn edge connects parent task to child future task, as before 
•  Join edge connects end of future task to Immediately Enclosing 

Finish (IEF), as before 
•  Additional join edges are inserted from end of future task to 

each get() operation on future object 
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Computation Graph for Two-way Parallel 
Array Sum using Future Tasks"



COMP 322, Spring 2011 (V.Sarkar)	

13 

Why must Future References be 
declared as final?"

static future<int> f1=null; 

static future<int> f2=null; 

void main(String[] args) { 

  f1 = async<int> {return a1();}; 

  f2 = async<int> {return a2();}; 

} 

int a1() { // Task T1 
 while (f2 == null); // spin loop 
  return f2.get(); //T1 waits for T2 
} 

int a2() { // Task T2 
  while (f1 == null); // spin loop 
  return f1.get(); //T2 waits for T1 
} 

"This situation cannot arise in HJ because f1 and f2 must be final"
•  Final declaration ensures that variable (handle) cannot be 

modified after initialization 

WARNING: spin loops are an example of bad parallel programming 
practice in application code (they should only be used by expert 
systems programmers, and even then sparingly) 

cyclic wait condition 
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Future Tasks with void Return Type"
•  Key difference between 

regular async’s and future 
tasks is that future tasks 
have a future<T> return 
value 

•  We can get an 
intermediate capability by 
setting T=void as shown 

•  Can be useful if a task 
needs to synchronize on 
another task, but doesn't 
need to use future object 
for communicating a 
return value 

sum1 = 0; sum2 = 0; // Task T1 
// Assume that sum1 & sum2 are fields 
final future<void> a1 = async<void> { 
  for (int i=0; i < X.length/2; i++)   
      sum1 += X[i]; // Task T2 
};  
final future<void> a2 = async<void> { 
  for (int i=X.length/2; i < X.length; i++)  
      sum2 += X[i]; // Task T3 
};  
//Task T1 waits for Tasks T2 and T3 
a1.get(); a2.get(); 
int sum = sum1 + sum2;  
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Using Future Tasks to generate  
Computation Graph CG3 from Homework 2"

// NOTE: return statement is optional 
when return type is void 

final future<void> A = async<void> 
{ . . . ; return;} 

final future<void> B = async<void> 
{ A.get(); . . . ; return;} 

final future<void> C = async<void> 
{ A.get(); . . . ; return;} 

final future<void> D = async<void> 
{ B.get(); C.get(); . . . ; return;} 

final future<void> E = async<void> 
{ C.get(); . . . ; return;} 

final future<void> F = async<void> 
{ D.get(); E.get(); . . . ; return;} 

A 

B C 

D E 

F 

Computation Graph CG3 

NOTE: this is not an 
acceptable solution for 
Homework~2 since this 
code uses future tasks! 


