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Announcements!
•  Homework 2 is due by 5pm today 
•  Homework 3 will be assigned on Monday, Jan 24th and will be 

due two weeks later on Monday, Feb 7th 
— This is a programming assignment with abstract performance metrics  
— To prepare for HW3, please make sure that you can compile and 

run the programs from Lab 2 on your own, using the –perf option.  
In case of problems, please send email to comp322-staff @ 
mailman.rice.edu 

•  Graded Homework 1 assignments will be emailed to you by 
Monday, Jan 24th 
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Acknowledgments for Todayʼs Lecture!
•  COMP 322 Lecture 5 handout 
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Sequential Array Sum Program  
(Lecture 1)!

int sum = 0; 
for (int i=0 ; i < X.length ; i++ ) 
    sum += X[i]; 

•  The original computation graph 
is sequential 

•  We studied a 2-task parallel 
program for this problem 

•  How can we expose more 
parallelism? 

Computation Graph 
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Reduction Tree Schema for computing 
Array Sum in parallel!

+ 

X[2] X[3] 

+ 

X[0] X[1] 

+ 

X[4] X[5] 

+ 

X[6] X[7] 

+ + 

+ 

X[0] X[2] X[4] X[6] 

X[0] X[4] 

X[0] 

stride = 1, size = 4 

stride = 2, size = 2 

stride = 4, size = 1 

Observations: 
•  This algorithm overwrites X (make a copy if X is needed later) 
•  stride = distance between array subscript inputs for each addition 
•  size = number of additions that can be executed in parallel in each 

level (stage) 
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Parallel Program that satisfies dependences in 
Reduction Tree schema (for X.length = 8)!

finish { // STAGE 1: stride = 1, size = 4 parallel additions 
  async X[0]+=X[1]; async X[2]+=X[3];  
  async X[4]+=X[5]; async X[6]+=X[7];  
} 
finish { // STAGE 2: stride = 2, size = 2 parallel additions 
  async X[0]+=X[2]; async X[4]+=X[6];  
} 
finish { // STAGE 3: stride = 4, size = 1 parallel additions 
  async X[0]+=X[4];  
} 
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Generalization to arbitrary sized arrays  
(ArraySum1)!

for ( int stride = 1; stride < X.length ; stride *= 2 ) { 
  // Compute size = number of additions to be performed in stride 
  int size=ceilDiv(X.length,2*stride); 
  finish for(int i = 0; i < size; i++) 
    async { 
      if ( (2*i+1)*stride < X.length ) 
        X[2*i*stride]+=X[(2*i+1)*stride];  
    } // finish-for-async 
} // for 

// Divide x by y, round up to next largest int, and return result  
static int ceilDiv(int x, int y) { return (x+y-1) / y; } 
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Complexity Analysis of ArraySum1!
•  Define n = X.length 
•  Assume that each addition takes 1 unit of time 

— Ignore all other computations since they are related to the addition 
by some constant 

•  Total number of additions, WORK = n-1 = O(n) 
•  Critical path length (number of stages), CPL = ceiling(log2(n)) = 

O(log(n)) 
•  Ideal parallelism = WORK/CPL = O(n) / O(log(n)) 
•  Consider an execution on p processors 

— Compute partial sum for n/p elements on each processor 
— Use ArraySum1 program to reduce p partial sums to one total sum 
— CPL for this version is O(n/p + log(p)) 
— Parallelism for this version is O(n) / O(n/p + log(p)) 
— Algorithm is optimal for p = n / log(n), or fewer, processors – why? 
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Computation Graph for ArraySum1!

Stmt 1 Stmt 3 Stmt 5 
End-

Finish 
(main) 

X[0] 
+= 

 X[1] 

X[2] 
+= 

 X[3] 

Continue edge Join edge Spawn edge 

X[4] 
+= 

 X[5] 

X[6] 
+= 

 X[7] 

X[0] 
+= 

 X[2] 

X[4] 
+= 

 X[6] 

X[0] 
+= 

 X[4] 

STAGE 1 

STAGE 2 

STAGE 3 

Observations: 
•  Computation graph has 

extra dependences 
relative to schema e.g., 
X[0]+=X[2] must follow X
[4]+=X[5] 

•  Extra dependences can 
make a difference if 
computations in same 
stage take different 
times e.g., if X[4]+=X[5] 
and X[0]+=X[2] take 100 
time units each 

•  How can we write a 
program that avoids these 
extra dependences? 
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Extra dependences in ArraySum1 
program!

+ 

X[2] X[3] 

+ 

X[0] X[1] 

+ 

X[4] X[5] 

+ 

X[6] X[7] 

X[0] X[2] X[4] X[6] 

+ + 

X[0] 

X[4] 

+ 

X[0] 

Extra dependence edges due to finish-async stages 
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Summing an arbitrary sized array using a 
Recursive method and Future Tasks (ArraySum2)!
static int computeSum(int[] X, int lo, int hi) { 
  if ( lo > hi ) return 0; 
  else if ( lo == hi ) return X[lo]; 
  else {  
    int mid = (lo+hi)/2; 
    final future<int> sum1 =  
      async<int> {return computeSum(X, lo, mid);}; 
    final future<int> sum2 =  
      async<int> {return computeSum(X, mid+1, hi);}; 
    return sum1.get() + sum2.get(); 
  } 
} // computeSum 
int sum = computeSum(X, 0, X.length-1); // main program code 

Can be replaced 
by finish-async, 
but future tasks 
are more natural 
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Parallel Array Reductions!
•  Why all this focus on array sum? 
•  ArraySum1 and ArraySum2 programs can easily be adapted to 

reduce any associative function f 
— f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any 

inputs a, b, and c 

•  Sequential version of array reduction: 
 int result=X[0];  
 for(int i=1 ; i < X.length ; i++ ) result=f(result,X[i]); 

•  General reductions have many interesting applications in 
practice, as you will see when we learn about Google’s Map 
Reduce framework 

•  Motivates complexity analysis where evaluation of a single call 
to f() is assumed to take 1 unit of time (could be much larger 
than an integer add, and justify the use of an async) 
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Extension of ArraySum1 to reduce an 
arbitrary associative function, f!

for ( int stride = 1; stride < X.length ; stride *= 2 ) { 
  // Compute size = number of additions to be performed in stride 
  int size=ceilDiv(X.length,2*stride); 
  finish for(int i = 0; i < size; i++) 
    async { 
      if ( (2*i+1)*stride < X.length ) 
        X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);  
    } // finish-for-async 
} // for 

// Divide x by y, round up to next largest int, and return result  
static int ceilDiv(int x, int y) { return (x+y-1) / x; } 
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Extension of ArraySum2 to reduce an 
arbitrary associative function, f!

static int computeSum(int[] X, int lo, int hi) { 
  if ( lo > hi ) return identity(); 
  else if ( lo == hi ) return X[lo]; 
  else {  
    int mid = (lo+hi)/2; 
    final future<int> sum1 =  
      async<int> {return computeSum(X, lo, mid);}; 
    final future<int> sum2 =  
      async<int> {return computeSum(X, mid+1, hi);}; 
    return f(sum1.get(), sum2.get()); 
  } 
} // computeSum 
int sum = computeSum(X, 0, X.length-1); // main program code 


