COMP 322: Fundamentals of
Parallel Programming

Lecture 5: Parallel Array Sum
and Array Reductions

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar®@rice.edu

COMP 322 Lecture 5 21 January 2011

Announcements

* Homework 2 is due by 5pm today

* Homework 3 will be assigned on Monday, Jan 24™ and will be
due two weeks later on Monday, Feb 7th

—This is a programming assignment with abstract performance metrics

—To prepare for HW3, please make sure that you can compile and
run the programs from Lab 2 on your own, using the -perf option.
In case of problems, please send email to comp322-staff @

mailman.rice.edu

* Graded Homework 1 assignments will be emailed to you by
Monday, Jan 24th

2 COMP 322, Spring 2011 (V.Sarkar) &

Acknowledgments for Today’s Lecture

* COMP 322 Lecture 5 handout

3 COMP 322, Spring 2011 (V.Sarkar) »@J

Sequential Array Sum Program
(Lecture 1)

int sum = O; Computation Graph
for (int i=0 ; i < X.length ; i++)
sum += X[i]; (i X[O]
* The original computation graph A1)
is sequential
* We studied a 2-task parallel X[2]

program for this problem d_) /

* How can we expose more
parallelism?)

4 COMP 322, Spring 2011 (V.Sarkar) A

Reduction Tree Schema for computing
Array Sum in parallel

X[0] X[1] X[2] X[3] X[4] X[9] X[6] X[7]
NS NS N N

@ stride = 1, size = 4

X[0] X[2] X[4] A

stride = 2, size = 2

X[0] X[4]
@ stride = 4, size = 1

Observations: X[0]

* This algorithm overwrites X (make a copy if X is needed later)
* stride = distance between array subscript inputs for each addition

* size = number of additions that can be executed in parallel in each
level (stage)

5 COMP 322, Spring 2011 (V.Sarkar) A

Parallel Program that satisfies dependences in
Reduction Tree schema (for X.length = 8)

finish { // STAGE 1: stride = 1, size = 4 parallel additions
async X[0]+=X[1]: async X[2]+=X[3].
async X[4]+=X[5]. async X[6]+=X[7]:

}

finish { // STAGE 2: stride = 2, size = 2 parallel additions
async X[0]+=X[2]. async X[4]+=X[6].

}

finish { // STAGE 3: stride = 4, size = 1 parallel additions
async X[0]+=X[4]:

}

6 COMP 322, Spring 2011 (V.Sarkar) &),

Generalization to arbitrary sized arrays
(ArraySum1)

for (int stride = 1; stride < X.length ; stride *= 2) {
// Compute size = number of additions to be performed in stride
int size=ceilDiv(X.length,2*stride):
finish for(int i = 0; i < size; i++)
async {
if ((2*i+1)*stride < X.length)
X[2*i*stride]+=X[(2%i+1)*stride];
} // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result
static int ceilDiv(int x, int y) { return (x+y-1) / y: }

7 COMP 322, Spring 2011 (V.Sarkar) &),

Complexity Analysis of ArraySum1

Define n = X.length

Assume that each addition takes 1 unit of time

—Ignore all other computations since they are related to the addition
by some constant

Total number of additions, WORK = n-1 = O(n)

Critical path length (number of stages), CPL = ceiling(log,(n)) =
O(log(n))
Ideal parallelism = WORK/CPL = O(n) / O(log(n))

Consider an execution on p processors

— Compute partial sum for n/p elements on each processor

—Use ArraySuml program to reduce p partial sums to one total sum
—CPL for this version is O(n/p + log(p))

—Parallelism for this version is O(n) / O(n/p + log(p))

— Algorithm is optimal for p = n / log(n), or fewer, processors - why?

COMP 322, Spring 2011 (V.Sarkar) &

Computation Graph for ArraySumf

Observations:

* Computation graph has
extra dependences
relative to schema e.g.,
X[0]+=X[2] must follow X
[4]+=X[3]

* Extra dependences can
make a difference if
computations in same
stage take different
times e.qg., if X[4]+=X[5]
and X[0]+=X[2] take 100
time units each

* How can we write a
program that avoids these
extra dependences?

STAGE 1

—>» Continue edge =P Spawnedge = ---------- > Join edge

9 COMP 322, Spring 2011 (V.Sarkar) 2

Extra dependences in ArraySumf
program

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

/ ~
@ - @ S o P @ - @
b ooTTe—l | o1 V- }
X[O]\ XRho” T oXi4) X[6]
ST Tl I,
%}f —————— £
X[0] — XI14]
X[0]
-——— Extra dependence edges due to finish-async stages

10 COMP 322, Spring 2011 (V.SarKar) Z\\J

Summing an arbitrary sized array using a
Recursive method and Future Tasks (ArraySum2)

static int computeSum(int[] X, int lo, int hi) {

if (lo > hi) return O; Can be replaced
else if (lo == hi) return X[lo]; by finish-async,

Ise { but future tasks
eise are more natural
int mid = (lo+hi)/2;

final future<int> suml =

async<int> {return computeSum(X, lo, mid):}:
final future<int> sum2 =

async<int> {return computeSum(X, mid+1, hi):}:
return suml.get() + sum2.get():

}
} // computeSum

int sum = computeSum(X, O, X.length-1): // main program code

11 COMP 322, Spring 2011 (V.Sarkar) &

12

Parallel Array Reductions

Why all this focus on array sum?

ArraySuml and ArraySum2 programs can easily be adapted to
reduce any associative function f

—f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any
inputs a, b, and ¢

Sequential version of array reduction:
int result=X[0]:;
for(int i=1 ; i < X.length ; i++) result=f(result, X[i]):

General reductions have many interesting applications in
practice, as you will see when we learn about Google's Map
Reduce framework

Motivates complexity analysis where evaluation of a single call
to f() is assumed to take 1 unit of time (could be much larger
than an integer add, and justify the use of an async)

COMP 322, Spring 2011 (V.Sarkar) &),

Extension of ArraySum1 to reduce an
arbitrary associative function, f

for (int stride = 1; stride < X.length ; stride *= 2) {
// Compute size = number of additions to be performed in stride
int size=ceilDiv(X.length,2*stride):;
finish for(int i = 0; i < size; i++)
async {
if ((2*i+1)*stride < X.length)
X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);
} // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result
static int ceilDiv(int x, int y) { return (x+y-1) / x; }

13 COMP 322, Spring 2011 (V.Sarkar) &

Extension of ArraySumz2 to reduce an
arbitrary associative function, f

static int computeSum(int[] X, int lo, int hi) {
if (lo > hi) return identity();
else if (lo == hi) return X[lo];
else {
int mid = (lo+hi)/2;
final future<int> suml =
async<int> {return computeSum(X, lo, mid):}:
final future<int> sum2 =
async<int> {return computeSum(X, mid+1, hi):};
return f(suml.get(), sum2.get()):
}
} // computeSum
int sum = computeSum(X, O, X.length-1): // main program code

14 COMP 322, Spring 2011 (V.Sarkar) &

