
COMP 322: Fundamentals of
Parallel Programming

Lecture 5: Parallel Array Sum
and Array Reductions

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 5 21 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 2 is due by 5pm today
•  Homework 3 will be assigned on Monday, Jan 24th and will be

due two weeks later on Monday, Feb 7th
— This is a programming assignment with abstract performance metrics
— To prepare for HW3, please make sure that you can compile and

run the programs from Lab 2 on your own, using the –perf option.
In case of problems, please send email to comp322-staff @
mailman.rice.edu

•  Graded Homework 1 assignments will be emailed to you by
Monday, Jan 24th

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  COMP 322 Lecture 5 handout

COMP 322, Spring 2011 (V.Sarkar)	

4

Sequential Array Sum Program  
(Lecture 1)!

int sum = 0;
for (int i=0 ; i < X.length ; i++)
 sum += X[i];

•  The original computation graph
is sequential

•  We studied a 2-task parallel
program for this problem

•  How can we expose more
parallelism?

Computation Graph

COMP 322, Spring 2011 (V.Sarkar)	

5

Reduction Tree Schema for computing
Array Sum in parallel!

+

X[2] X[3]

+

X[0] X[1]

+

X[4] X[5]

+

X[6] X[7]

+ +

+

X[0] X[2] X[4] X[6]

X[0] X[4]

X[0]

stride = 1, size = 4

stride = 2, size = 2

stride = 4, size = 1

Observations:
•  This algorithm overwrites X (make a copy if X is needed later)
•  stride = distance between array subscript inputs for each addition
•  size = number of additions that can be executed in parallel in each

level (stage)

COMP 322, Spring 2011 (V.Sarkar)	

6

Parallel Program that satisfies dependences in
Reduction Tree schema (for X.length = 8)!

finish { // STAGE 1: stride = 1, size = 4 parallel additions
 async X[0]+=X[1]; async X[2]+=X[3];
 async X[4]+=X[5]; async X[6]+=X[7];
}
finish { // STAGE 2: stride = 2, size = 2 parallel additions
 async X[0]+=X[2]; async X[4]+=X[6];
}
finish { // STAGE 3: stride = 4, size = 1 parallel additions
 async X[0]+=X[4];
}

COMP 322, Spring 2011 (V.Sarkar)	

7

Generalization to arbitrary sized arrays  
(ArraySum1)!

for (int stride = 1; stride < X.length ; stride *= 2) {
 // Compute size = number of additions to be performed in stride
 int size=ceilDiv(X.length,2*stride);
 finish for(int i = 0; i < size; i++)
 async {
 if ((2*i+1)*stride < X.length)
 X[2*i*stride]+=X[(2*i+1)*stride];
 } // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result
static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2011 (V.Sarkar)	

8

Complexity Analysis of ArraySum1!
•  Define n = X.length
•  Assume that each addition takes 1 unit of time

— Ignore all other computations since they are related to the addition
by some constant

•  Total number of additions, WORK = n-1 = O(n)
•  Critical path length (number of stages), CPL = ceiling(log2(n)) =

O(log(n))
•  Ideal parallelism = WORK/CPL = O(n) / O(log(n))
•  Consider an execution on p processors

— Compute partial sum for n/p elements on each processor
— Use ArraySum1 program to reduce p partial sums to one total sum
— CPL for this version is O(n/p + log(p))
— Parallelism for this version is O(n) / O(n/p + log(p))
— Algorithm is optimal for p = n / log(n), or fewer, processors – why?

COMP 322, Spring 2011 (V.Sarkar)	

9

Computation Graph for ArraySum1!

Stmt 1 Stmt 3 Stmt 5
End-

Finish
(main)

X[0]
+=

 X[1]

X[2]
+=

 X[3]

Continue edge Join edge Spawn edge

X[4]
+=

 X[5]

X[6]
+=

 X[7]

X[0]
+=

 X[2]

X[4]
+=

 X[6]

X[0]
+=

 X[4]

STAGE 1

STAGE 2

STAGE 3

Observations:
•  Computation graph has

extra dependences
relative to schema e.g.,
X[0]+=X[2] must follow X
[4]+=X[5]

•  Extra dependences can
make a difference if
computations in same
stage take different
times e.g., if X[4]+=X[5]
and X[0]+=X[2] take 100
time units each

•  How can we write a
program that avoids these
extra dependences?

COMP 322, Spring 2011 (V.Sarkar)	

10

Extra dependences in ArraySum1
program!

+

X[2] X[3]

+

X[0] X[1]

+

X[4] X[5]

+

X[6] X[7]

X[0] X[2] X[4] X[6]

+ +

X[0]

X[4]

+

X[0]

Extra dependence edges due to finish-async stages

COMP 322, Spring 2011 (V.Sarkar)	

11

Summing an arbitrary sized array using a
Recursive method and Future Tasks (ArraySum2)!
static int computeSum(int[] X, int lo, int hi) {
 if (lo > hi) return 0;
 else if (lo == hi) return X[lo];
 else {
 int mid = (lo+hi)/2;
 final future<int> sum1 =
 async<int> {return computeSum(X, lo, mid);};
 final future<int> sum2 =
 async<int> {return computeSum(X, mid+1, hi);};
 return sum1.get() + sum2.get();
 }
} // computeSum
int sum = computeSum(X, 0, X.length-1); // main program code

Can be replaced
by finish-async,
but future tasks
are more natural

COMP 322, Spring 2011 (V.Sarkar)	

12

Parallel Array Reductions!
•  Why all this focus on array sum?
•  ArraySum1 and ArraySum2 programs can easily be adapted to

reduce any associative function f
— f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any

inputs a, b, and c

•  Sequential version of array reduction:
 int result=X[0];
 for(int i=1 ; i < X.length ; i++) result=f(result,X[i]);

•  General reductions have many interesting applications in
practice, as you will see when we learn about Google’s Map
Reduce framework

•  Motivates complexity analysis where evaluation of a single call
to f() is assumed to take 1 unit of time (could be much larger
than an integer add, and justify the use of an async)

COMP 322, Spring 2011 (V.Sarkar)	

13

Extension of ArraySum1 to reduce an
arbitrary associative function, f!

for (int stride = 1; stride < X.length ; stride *= 2) {
 // Compute size = number of additions to be performed in stride
 int size=ceilDiv(X.length,2*stride);
 finish for(int i = 0; i < size; i++)
 async {
 if ((2*i+1)*stride < X.length)
 X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);
 } // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result
static int ceilDiv(int x, int y) { return (x+y-1) / x; }

COMP 322, Spring 2011 (V.Sarkar)	

14

Extension of ArraySum2 to reduce an
arbitrary associative function, f!

static int computeSum(int[] X, int lo, int hi) {
 if (lo > hi) return identity();
 else if (lo == hi) return X[lo];
 else {
 int mid = (lo+hi)/2;
 final future<int> sum1 =
 async<int> {return computeSum(X, lo, mid);};
 final future<int> sum2 =
 async<int> {return computeSum(X, mid+1, hi);};
 return f(sum1.get(), sum2.get());
 }
} // computeSum
int sum = computeSum(X, 0, X.length-1); // main program code

