
COMP 322: Fundamentals of
Parallel Programming

Lecture 6: Data Races and
How to Avoid Them

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 6 24 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 3 is due by 5pm on Monday, Feb 7th

— This is a programming assignment with abstract performance metrics
— To prepare for HW3, please make sure that you can compile and

run the programs from Lab 2 on your own, using the –perf option.
In case of problems, please send email to comp322-staff @
mailman.rice.edu

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  COMP 322 Lecture 6 handout

COMP 322, Spring 2011 (V.Sarkar)	

4

Example of Incorrect Parallelization 
from Homework 1!

1.  // Sequential version
2.  for (p = first; p != null; p = p.next) p.x = p.y + p.z;
3.  for (p = first; p != null; p = p.next) sum += p.x;
4. 
5.  // Incorrect parallel version
6.  for (p = first; p != null; p = p.next)
7.  async p.x = p.y + p.z;
8.  for (p = first; p != null; p = p.next)
9.  sum += p.x;

 Why was this version incorrect?

 What does its computation graph say about writes to p.x in
line 7 and reads of p.x in line 9?

COMP 322, Spring 2011 (V.Sarkar)	

5

Formal Definition of Data Races!
 Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps S1
and S2 in computation graph CG such that:
1.  S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2.  Both S1 and S2 read or write L, and at least one of the accesses
is a write.

 Data races are challenging because it is usually impossible to
guarantee that all possible orderings of the accesses to a
location will be encountered during program testing.
 Thus, no amount of testing may be able to detect errors that
might only become manifest in production use.

COMP 322, Spring 2011 (V.Sarkar)	

6

Observations!
1.  Immutability property: there cannot be a data race on shared

immutable data.
—  A location, L, is immutable if it is only written during initialization,

and can only be read after initialization. In this case, no read can
potentially execute in parallel with the write.

2.  Single-task ownership property: there cannot be a data race
on a location that is only read or written by a single task.
—  Define: step S in computation graph CG “owns” location L if S

performs a read or write access on L. If step S belongs to Task
T, we can also say that Task T owns L when executing S.

—  Consider a location L that is only owned by steps that belong to
the same task, T. Since all steps in Task T must be connected
by continue edges in CG, all reads and writes to L must be ordered
by the dependences in CG. Therefore, no data race is possible on
location L.

COMP 322, Spring 2011 (V.Sarkar)	

7

Observations (contd)!
3.  Ownership-transfer property: there cannot be a data race on

a location if all steps that read or write it are totally ordered
in CG. (Generalization of single-task-ownership property.)
—  Think of the ownership of L being ``transferred'' from one step

to another, even across task boundaries, as execution follows the
path of dependence edges in the total order.

4.  Local-variable ownership property: there cannot be a data
race on a local variable.
—  If L is a local variable, it can only be written by the task in

which it is declared (L's owner). The copy-in semantics for local
variables ensures that the value of the local variable is copied on
async creation thus guaranteeing that there is no race condition
between the read access in the descendant task and the write
access in L’s owner.

COMP 322, Spring 2011 (V.Sarkar)	

8

Observations (contd)!
5.  Determinism property: if a parallel program with async, finish,

future and get operations can never have a data race, then it
must be deterministic with respect to its inputs.
—  A computation is said to be “deterministic with respect to its

inputs” if it always computes the same answer, when given the
same inputs.

—  For the class of parallel programs that we have studied thus far,
the absence of data races is sufficient to guarantee that the
parallel program must be deterministic with respect to its inputs.

—  Such programs are said to to be “data-race-free”. Programs that
may exhibit data races are said to be “racy”.

COMP 322, Spring 2011 (V.Sarkar)	

9

Avoiding Data Races: Immutability Tip!
•  Use immutable objects and arrays as far as possible

— May require making copies of objects and arrays instead of just
modifying a single field or array element

— Copying overhead may be prohibitive in some cases, but acceptable
in others

•  Example with java.lang.String
finish {
 String s1 = "XYZ";
 async { String s2 = s1.toLowerCase(); ... }
 System.out.println(s1);
}

COMP 322, Spring 2011 (V.Sarkar)	

10

Avoiding Data Races:  
Single-task ownership tip!

•  If an object or array needs to be written multiple times after
initialization, then try and restrict its ownership to a single task.
— Entails making copies when sharing the object with other tasks.
— As in the Immutability tip, copying overhead may be prohibitive in some

cases, but acceptable in others.

•  Example
finish { // Task T1 owns A
 int[] A = new int[n]; // ... initialize array A ...
 // create a copy of array A in B
 int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);
 async { // Task T2 owns B
 int sum = computeSum(B,0,B.length-1); // Modifies B (Lecture 5)
 System.out.println("sum = " + sum);
 }
 // ... update Array A ...
 System.out.println(Arrays.toString(A)); //printed by task T1
}

COMP 322, Spring 2011 (V.Sarkar)	

11

Avoiding Data Races:  
Ownership-transfer tip!

•  If an object or array needs to be written by multiple tasks, then
try and restrict its ownership so that all read/write steps are
ordered by a chain of dependences in the CG.
— Ownership transfer occurs when we cross task boundaries in the chain

of dependences

•  Example
finish { // Task T1 owns A
 int[] A = new int[n]; // ... initialize array A ...
 // Task T1 initially owns B
 int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);
 async { // Task T2 now owns B
 int sum = computeSum(B,0,B.length-1); // Modifies B (Lecture 5)
 System.out.println("sum = " + sum);
 }
 // ... update and print Array A ...
}

COMP 322, Spring 2011 (V.Sarkar)	

12

Assumptions that can be made in the
presence of Data Races!

•  Example
 p.x = 0; q = p;
 async p.x = 1; // Task T1
 async p.x = 2; // Task T2
 async { // Task T3
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + q.x);
 System.out.println("Third read = " + p.x);
 }
 async { // Task T4
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + p.x);
 System.out.println("Third read = " + p.x);
 }

What values can be printed by tasks T3 and T4?

COMP 322, Spring 2011 (V.Sarkar)	

13

Memory Models!
•  A memory consistency model, or memory model, is the part of a

programming language specification that defines what write
values a read may see in the presence of data races.

•  We will briefly discuss three memory models
— Sequential Consistency (SC)
— Location Consistency (LC)
— C++ Memory Model

COMP 322, Spring 2011 (V.Sarkar)	

14

Sequential Consistency!

COMP 322, Spring 2011 (V.Sarkar)	

15

Example Revisited!
•  SC model will not permit Task T3 to print “0, 1, 2” and Task

T4 to print “0, 2, 1”

 p.x = 0; q = p;
 async p.x = 1; // Task T1
 async p.x = 2; // Task T2
 async { // Task T3
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + q.x);
 System.out.println("Third read = " + p.x);
 }
 async { // Task T4
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + p.x);
 System.out.println("Third read = " + p.x);
 }

COMP 322, Spring 2011 (V.Sarkar)	

16

Example Revisited!
•  What if the programmer transformed the body of Task T3?

 p.x = 0; q = p;
 async p.x = 1; // Task T1
 async p.x = 2; // Task T2
 async { // Task T3
 int p_x = p.x;

 System.out.println("First read = " + p_x);
 System.out.println("Second read = " + q.x);
 System.out.println("Third read = " + p_x);
 }
 async { // Task T4
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + p.x);
 System.out.println("Third read = " + p.x);
 }

