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Announcements!
•  Homework 3 is due by 5pm on Monday, Feb 7th 

— This is a programming assignment with abstract performance metrics  
— To prepare for HW3, please make sure that you can compile and 

run the programs from Lab 2 on your own, using the –perf option.  
In case of problems, please send email to comp322-staff @ 
mailman.rice.edu 

•  We have requested 24-hour access to Ryon building and Ryon 
102 lab for all students enrolled in COMP 322  
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Acknowledgments for Todayʼs Lecture!
•  Prof. Kathy Yelick, UC Berkeley, CS 194 Lecture, Fall 2007 

— http://www.cs.berkeley.edu/~yelick/cs194f07/lectures/lect09-
dataparallel.pdf 

•  PLDI 2007 tutorial on X10 co-authored with Vijay Saraswat 
and Christoph von Praun 

•  COMP 322 Lecture 6 handout 
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Prefix Sum (Scan) Problem Statement!
Given input array A, compute output array X as follows 

Observations: 
•  Mathematical specification may suggest that O(n2) additions are 

required since each X[i] is the sum of i terms 
•  However, it is easy to see that prefix sums can be computed 

sequentially in O(n) time 
// Copy input array A into output array X 
X = new int[A.length]; System.arraycopy(A,0,X,0,A.length); 
// Update array X with prefix sums 
for (int i=1 ; i < X.length ; i++ ) X[i] += X[i-1]; 
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An Inefficient Parallel Prefix Sum program !
finish { 
  for (int i=0 ; i < X.length ; i++ )  
    // invoke computeSum() function from Lecture 5 
    async X[i] = computeSum(A, 0, i); 
} 

Observations: 
•  Critical path length, CPL = O(log n) 
•  Total number of operations, WORK = O(n2) 
 With P = O(n) processors, the best execution time that you can 

achieve is TP = max(CPL, WORK/P) = O(n), which is no better 
than sequential! 
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How can we do better?!
Observation: each prefix sum can be decomposed into reusable 

terms of power-of-2-size e.g. 

Approach:  
•  Combine reduction tree idea from Parallel Array Sum with 

partial sum idea from Sequential Prefix Sum 
•  Use an “upward sweep” to perform parallel reduction, while 

storing partial sum terms in tree nodes 
•  Use a “downward sweep” to compute prefix sums while reusing 

partial sum terms stored in upward sweep 
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Parallel Prefix Sum: Upward Sweep!
1.  Receive values from children 
2.  Store left value in box (will contribute to prefix sum 

for right subtree in downward sweep) 
3.  Send left+right value to parent 

15!

2!

Input array, A:!
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Parallel Prefix Sum: Downward Sweep!
1.  Receive value from parent (root receives 0) 
2.  Send parent’s value to left child (prefix sum for elements to left of 

left child’s subtree) 
3.  Send parent+box value to right child (prefix sum for elements to 

left of right child’s subtree) 

Add A[i] to get final prefix sum 

= Prefix sum 
including A[i] 

+ A[i] 

Prefix sum 
excluding A[i] 

0!
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Summary of Parallel Prefix Sum 
Algorithm!

•  Critical path length, CPL = O(log n) 
•  Total number of add operations, WORK = O(n) 
•  Optimal algorithm for P = O(n/log n) processors 

— Adding more processors does not help 

•  Like Array Sum Reduction, Parallel Prefix Sum has several 
applications that go beyond computing the sum of array 
elements e.g., 
— Prefix Max with Index of First Occurrence: given an input array A, 

output an array X of objects such that X[i].max is the maximum of 
elements A[0…i] and X[i].index contains the index of the first 
occurrence of X[i].max in A[0…i] 

— Filter and Packing of Strings: given an input array A identify 
elements that satisfy some desired property (e.g., uppercase), and 
pack them in a new output array.  (First create a 0/1 array for 
elements that satisfy the property, and then compute prefix sums 
to identify locations of elements to be packed.) 
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HJʼs forall statement!
Goal: capture common finish-for-async pattern in a single 

construct e.g., replace 
finish { 
  for (int I = 0 ; I < N ; I++) 
    for (int J = 0 ; J < N ; J++)  
      async 
        for (int K = 0 ; K < N ; K++) 
          C[I][J] += A[I][K] * B[K][J]; 
} 

by 
forall (point [I,J] : [0:N-1,0:N-1]) 
  for (point[K] : [0:N-1]) 
    C[I][J] += A[I][K] * B[K][J]; 
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Observations!
•  Combination of finish-for-async is replaced by a single 

keyword, forall 
•  Multiple loops can be collapsed into a single forall, with a multi-

dimensional iteration space. 
•  Iteration variable for a forall is a point (integer tuple) such as 

[I,J] 
•  Loop bounds can be specified as a rectangular region (dimension 

ranges) such as [0:N-1,0:N-1] 
•  HJ also extends the sequential for statement so as to iterate 

sequentially over a rectangular region 
— Simplifies conversion between for and forall 
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Points!
•  A point is an element of an n-dimensional Cartesian space 

(n>=1) with integer-valued coordinates e.g., [5], [1, 2], …  
— Dimensions are numbered from 0 to n-1 
— n is also referred to as the rank of the point 

•  A point variable can hold values of different ranks e.g.,  
— point p; p = [1]; … p = [2,3]; … 

•  The following operations are defined on a point-valued 
expression p1 
— p1.rank --- returns rank of point p1 
— p1.get(i) --- returns element i of point p1 

–  Returns element (i mod p1.rank) if i < 0 or  i >= p1.rank 
— p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2) 

–  Returns true iff p1 is lexicographically <, <=, >, or >= p2  
–  Only defined when p1.rank and p1.rank are equal 
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Example: point!
public class TutPoint { 

    public static void main(String[] args) { 

        point p1 = [1,2,3,4,5]; 

        point p2 = [1,2]; 

        point p3 = [2,1]; 

        System.out.println("p1 = " + p1 +  

               " ; p1.rank = " + p1.rank +  

               " ; p1[2] = " + p1[2]); 

        System.out.println("p2 = " + p2 +  

               " ; p3 = " + p3 + " ; p2.lt(p3) = " + 

               p2.lt(p3)); 

    } 

} 

Console output: 
p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1[2] = 3 
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true 
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Rectangular Regions!
A rectangular region is the set of points contained in a rectangular subspace 

A region variable can hold values of different ranks e.g.,  
—  region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; … 

Operations 
—  R.rank ::= # dimensions in region;  
—  R.size() ::= # points in region 
—  R.contains(P) ::= predicate if region R contains point P 
—  R.contains(S) ::= predicate if region R contains region S 
—  R.equal(S) ::= true if region R equals region S 
—  R.rank(i).low() ::= lower bound of ith dimension of region R 
—  R.rank(i).high() ::= upper bound of ith dimension of region R 
—  R.ordinal(P) ::= ordinal value of point P in region R 
—  R.coord(N) ::= point in region R with ordinal value = N 
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Example: region!

public class TutRegion { 

    public static void main(String[] args) { 

        region R1 = [1:10, -100:100];  

        System.out.println("R1 = " + R1 + " ; R1.rank = " + 
R1.rank + " ; R1.size() = " + R1.size() + " ; R1.ordinal
([10,100]) = " + R1.ordinal([10,100])); 

        region R2 = [1:10,90:100];  

        System.out.println("R2 = " + R2 + " ; R1.contains(R2) = 
" + R1.contains(R2) + " ; R2.rank(1).low() = " + R2.rank
(1).low() + " ; R2.coord(0) = " + R2.coord(0)); 

    } 

} Console output: 
R1 = {1:10,-100:100} ; R1.rank = 2 ; R1.size() = 2010 ; 
R1.ordinal([10,100]) = 2009 

R2 = {1:10,90:100} ; R1.contains(R2) = true ; R2.rank(1).low
() = 90 ; R2.coord(0) = [1,90] 
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Summary of forall statement!
forall (point [i1] : [lo1:hi1]) <body> !

forall (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> !

forall (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> !

. . .!

•  forall statement creates multiple async child tasks, one per 
iteration of the forall 
— all child tasks can execute <body> in parallel 
— child tasks are distinguished by index “points” ([i1], [i1,i2], …) 

•  forall statement completes and parent task proceeds to the 
following statement when all child tasks have completed (implicit 
finish) 

•  <body> can read local variables from parent (copy-in semantics 
like async) 
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forall examples: updates to a  
two-dimensional Java array!

// Case 1: A[i][j]=F(A[i][j])  loops i,j can run in parallel !

forall (point[i,j] : [0:m-1,0:n-1]) A[i][j] = F(A[i][j]) ;!

// Case 2: A[i][j]=F(A[i][j-1])  only loop i can run in 
parallel !

forall (point[i] : [1:m-1]) !

  for (point[j] : [1:n-1]) // Equivalent to “for (j=1;j<n;j++)”!

     A[i][j] = F(A[i][j-1]) ;!

// Case 3: A[i][j]=F(A[i-1][j])  only loop j can run in 
parallel !

for (point[i] : [1:m-1]) // Equivalent to “for (i=1;i<m;j++)”!

  forall (point[j] : [1:n-1])!

     A[i][j] = F(A[i-1][j]) ;!
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Pointwise for loop!
•  HJ extends Java’s for loop to support sequential 

iteration over points in region R in canonical 
lexicographic order 
— for ( point p : R ) . . . 

•  Iteration space is define as in forall 
— Standard point operations can be used to extract individual 

index values from point p 
–  for ( point p : R )  

{ int i = p.get(0); int j = p.get(1); . . . } 
— Or an “exploded” syntax can be used instead of explicitly 

declaring a point variable 
–  for ( point [i,j] : R ) { . . . } 

— The exploded syntax declares the constituent variables (i, j, …) 
as local int variables in the scope of the for loop body 
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Example!
public class TutFor { 

    public static void main(String[] args) { 

        region R = [0:1,0:2]; 

        System.out.print("Points in region " + R + " ="); 

        for ( point p : R ) System.out.print(" " + p); 

        System.out.println(); 

        // Use exploded syntax instead 

        System.out.print("(i,j) pairs in region " + R + " ="); 

        for ( point[i,j] : R )  

            System.out.print("(" + i + "," + j + ")"); 

        System.out.println(); 

    } // main() 

} // TutFor Console output: 

Points in region {0:1,0:2} = [0,0] [0,1] [0,2] [1,0] [1,1] [1,2] 
(i,j) pairs in region {0:1,0:2} =(0,0)(0,1)(0,2)(1,0)(1,1)(1,2) 


