
COMP 322: Fundamentals of
Parallel Programming

Lecture 7: Parallel Prefix Sum,
 Forall Statement

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 7 26 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 3 is due by 5pm on Monday, Feb 7th

— This is a programming assignment with abstract performance metrics
— To prepare for HW3, please make sure that you can compile and

run the programs from Lab 2 on your own, using the –perf option.
In case of problems, please send email to comp322-staff @
mailman.rice.edu

•  We have requested 24-hour access to Ryon building and Ryon
102 lab for all students enrolled in COMP 322

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  Prof. Kathy Yelick, UC Berkeley, CS 194 Lecture, Fall 2007

— http://www.cs.berkeley.edu/~yelick/cs194f07/lectures/lect09-
dataparallel.pdf

•  PLDI 2007 tutorial on X10 co-authored with Vijay Saraswat
and Christoph von Praun

•  COMP 322 Lecture 6 handout

COMP 322, Spring 2011 (V.Sarkar)	

4

Prefix Sum (Scan) Problem Statement!
Given input array A, compute output array X as follows

Observations:
•  Mathematical specification may suggest that O(n2) additions are

required since each X[i] is the sum of i terms
•  However, it is easy to see that prefix sums can be computed

sequentially in O(n) time
// Copy input array A into output array X
X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);
// Update array X with prefix sums
for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

COMP 322, Spring 2011 (V.Sarkar)	

5

An Inefficient Parallel Prefix Sum program !
finish {
 for (int i=0 ; i < X.length ; i++)
 // invoke computeSum() function from Lecture 5
 async X[i] = computeSum(A, 0, i);
}

Observations:
•  Critical path length, CPL = O(log n)
•  Total number of operations, WORK = O(n2)
 With P = O(n) processors, the best execution time that you can

achieve is TP = max(CPL, WORK/P) = O(n), which is no better
than sequential!

COMP 322, Spring 2011 (V.Sarkar)	

6

How can we do better?!
Observation: each prefix sum can be decomposed into reusable

terms of power-of-2-size e.g.

Approach:
•  Combine reduction tree idea from Parallel Array Sum with

partial sum idea from Sequential Prefix Sum
•  Use an “upward sweep” to perform parallel reduction, while

storing partial sum terms in tree nodes
•  Use a “downward sweep” to compute prefix sums while reusing

partial sum terms stored in upward sweep

COMP 322, Spring 2011 (V.Sarkar)	

7

Parallel Prefix Sum: Upward Sweep!
1.  Receive values from children
2.  Store left value in box (will contribute to prefix sum

for right subtree in downward sweep)
3.  Send left+right value to parent

15!

2!

Input array, A:!

COMP 322, Spring 2011 (V.Sarkar)	

8

Parallel Prefix Sum: Downward Sweep!
1.  Receive value from parent (root receives 0)
2.  Send parent’s value to left child (prefix sum for elements to left of

left child’s subtree)
3.  Send parent+box value to right child (prefix sum for elements to

left of right child’s subtree)

Add A[i] to get final prefix sum

= Prefix sum
including A[i]

+ A[i]

Prefix sum
excluding A[i]

0!

COMP 322, Spring 2011 (V.Sarkar)	

9

Summary of Parallel Prefix Sum
Algorithm!

•  Critical path length, CPL = O(log n)
•  Total number of add operations, WORK = O(n)
•  Optimal algorithm for P = O(n/log n) processors

— Adding more processors does not help

•  Like Array Sum Reduction, Parallel Prefix Sum has several
applications that go beyond computing the sum of array
elements e.g.,
— Prefix Max with Index of First Occurrence: given an input array A,

output an array X of objects such that X[i].max is the maximum of
elements A[0…i] and X[i].index contains the index of the first
occurrence of X[i].max in A[0…i]

— Filter and Packing of Strings: given an input array A identify
elements that satisfy some desired property (e.g., uppercase), and
pack them in a new output array. (First create a 0/1 array for
elements that satisfy the property, and then compute prefix sums
to identify locations of elements to be packed.)

COMP 322, Spring 2011 (V.Sarkar)	

10

HJʼs forall statement!
Goal: capture common finish-for-async pattern in a single

construct e.g., replace
finish {
 for (int I = 0 ; I < N ; I++)
 for (int J = 0 ; J < N ; J++)
 async
 for (int K = 0 ; K < N ; K++)
 C[I][J] += A[I][K] * B[K][J];
}

by
forall (point [I,J] : [0:N-1,0:N-1])
 for (point[K] : [0:N-1])
 C[I][J] += A[I][K] * B[K][J];

COMP 322, Spring 2011 (V.Sarkar)	

11

Observations!
•  Combination of finish-for-async is replaced by a single

keyword, forall
•  Multiple loops can be collapsed into a single forall, with a multi-

dimensional iteration space.
•  Iteration variable for a forall is a point (integer tuple) such as

[I,J]
•  Loop bounds can be specified as a rectangular region (dimension

ranges) such as [0:N-1,0:N-1]
•  HJ also extends the sequential for statement so as to iterate

sequentially over a rectangular region
— Simplifies conversion between for and forall

COMP 322, Spring 2011 (V.Sarkar)	

12

Points!
•  A point is an element of an n-dimensional Cartesian space

(n>=1) with integer-valued coordinates e.g., [5], [1, 2], …
— Dimensions are numbered from 0 to n-1
— n is also referred to as the rank of the point

•  A point variable can hold values of different ranks e.g.,
— point p; p = [1]; … p = [2,3]; …

•  The following operations are defined on a point-valued
expression p1
— p1.rank --- returns rank of point p1
— p1.get(i) --- returns element i of point p1

–  Returns element (i mod p1.rank) if i < 0 or i >= p1.rank
— p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)

–  Returns true iff p1 is lexicographically <, <=, >, or >= p2
–  Only defined when p1.rank and p1.rank are equal

COMP 322, Spring 2011 (V.Sarkar)	

13

Example: point!
public class TutPoint {

 public static void main(String[] args) {

 point p1 = [1,2,3,4,5];

 point p2 = [1,2];

 point p3 = [2,1];

 System.out.println("p1 = " + p1 +

 " ; p1.rank = " + p1.rank +

 " ; p1[2] = " + p1[2]);

 System.out.println("p2 = " + p2 +

 " ; p3 = " + p3 + " ; p2.lt(p3) = " +

 p2.lt(p3));

 }

}

Console output:
p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1[2] = 3
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true

COMP 322, Spring 2011 (V.Sarkar)	

14 14

Rectangular Regions!
A rectangular region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,
—  region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
—  R.rank ::= # dimensions in region;
—  R.size() ::= # points in region
—  R.contains(P) ::= predicate if region R contains point P
—  R.contains(S) ::= predicate if region R contains region S
—  R.equal(S) ::= true if region R equals region S
—  R.rank(i).low() ::= lower bound of ith dimension of region R
—  R.rank(i).high() ::= upper bound of ith dimension of region R
—  R.ordinal(P) ::= ordinal value of point P in region R
—  R.coord(N) ::= point in region R with ordinal value = N

COMP 322, Spring 2011 (V.Sarkar)	

15 15

Example: region!

public class TutRegion {

 public static void main(String[] args) {

 region R1 = [1:10, -100:100];

 System.out.println("R1 = " + R1 + " ; R1.rank = " +
R1.rank + " ; R1.size() = " + R1.size() + " ; R1.ordinal
([10,100]) = " + R1.ordinal([10,100]));

 region R2 = [1:10,90:100];

 System.out.println("R2 = " + R2 + " ; R1.contains(R2) =
" + R1.contains(R2) + " ; R2.rank(1).low() = " + R2.rank
(1).low() + " ; R2.coord(0) = " + R2.coord(0));

 }

} Console output:
R1 = {1:10,-100:100} ; R1.rank = 2 ; R1.size() = 2010 ;
R1.ordinal([10,100]) = 2009

R2 = {1:10,90:100} ; R1.contains(R2) = true ; R2.rank(1).low
() = 90 ; R2.coord(0) = [1,90]

COMP 322, Spring 2011 (V.Sarkar)	

16

Summary of forall statement!
forall (point [i1] : [lo1:hi1]) <body> !

forall (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> !

forall (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> !

. . .!

•  forall statement creates multiple async child tasks, one per
iteration of the forall
— all child tasks can execute <body> in parallel
— child tasks are distinguished by index “points” ([i1], [i1,i2], …)

•  forall statement completes and parent task proceeds to the
following statement when all child tasks have completed (implicit
finish)

•  <body> can read local variables from parent (copy-in semantics
like async)

COMP 322, Spring 2011 (V.Sarkar)	

17

forall examples: updates to a  
two-dimensional Java array!

// Case 1: A[i][j]=F(A[i][j])  loops i,j can run in parallel !

forall (point[i,j] : [0:m-1,0:n-1]) A[i][j] = F(A[i][j]) ;!

// Case 2: A[i][j]=F(A[i][j-1])  only loop i can run in
parallel !

forall (point[i] : [1:m-1]) !

 for (point[j] : [1:n-1]) // Equivalent to “for (j=1;j<n;j++)”!

 A[i][j] = F(A[i][j-1]) ;!

// Case 3: A[i][j]=F(A[i-1][j])  only loop j can run in
parallel !

for (point[i] : [1:m-1]) // Equivalent to “for (i=1;i<m;j++)”!

 forall (point[j] : [1:n-1])!

 A[i][j] = F(A[i-1][j]) ;!

COMP 322, Spring 2011 (V.Sarkar)	

18

Pointwise for loop!
•  HJ extends Java’s for loop to support sequential

iteration over points in region R in canonical
lexicographic order
— for (point p : R) . . .

•  Iteration space is define as in forall
— Standard point operations can be used to extract individual

index values from point p
–  for (point p : R)

{ int i = p.get(0); int j = p.get(1); . . . }
— Or an “exploded” syntax can be used instead of explicitly

declaring a point variable
–  for (point [i,j] : R) { . . . }

— The exploded syntax declares the constituent variables (i, j, …)
as local int variables in the scope of the for loop body

COMP 322, Spring 2011 (V.Sarkar)	

19

Example!
public class TutFor {

 public static void main(String[] args) {

 region R = [0:1,0:2];

 System.out.print("Points in region " + R + " =");

 for (point p : R) System.out.print(" " + p);

 System.out.println();

 // Use exploded syntax instead

 System.out.print("(i,j) pairs in region " + R + " =");

 for (point[i,j] : R)

 System.out.print("(" + i + "," + j + ")");

 System.out.println();

 } // main()

} // TutFor Console output:

Points in region {0:1,0:2} = [0,0] [0,1] [0,2] [1,0] [1,1] [1,2]
(i,j) pairs in region {0:1,0:2} =(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)

