
COMP 322: Fundamentals of
Parallel Programming

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 1 9 January 2012

COMP 322, Spring 2012 (V.Sarkar)2

COMP 322 Course Information: Spring 2012
• “Fundamentals of Parallel Programming”

• Lectures: MWF, 1pm – 1:50pm, DH 1070 (all sections)

• Labs (mandatory):
— Tuesdays, 4:00pm - 5:20pm (section A03)
— Wednesdays, 3:30pm - 4:50pm (section A02)
— Thursdays, 4:00pm - 5:20pm (section A01)

• Instructor: Vivek Sarkar (vsarkar@rice.edu)

• Prerequisite: COMP 215 or equivalent

• Cross-listing: ELEC 323

COMP 322, Spring 2012 (V.Sarkar)3

Scope of Course
• Fundamentals of parallel programming

— Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

— Abstract models of parallel computations and computation graphs
— Parallel algorithms & data structures including lists, trees, graphs, matrices
— Common parallel programming patterns

• Habanero-Java (HJ) language, developed in the Habanero Multicore Software
Research project at Rice

• Java Concurrency

• Beyond HJ and Java: Map-Reduce, CUDA, MPI

• Written assignments

• Programming assignments
— Abstract metrics
— Real parallel systems (8-core Intel, Rice SUG@R system)

COMP 322, Spring 2012 (V.Sarkar)4

Lecture 1: The What and Why of Parallel Programming

• Acknowledgments
—CS 194 course on “Parallel Programming for Multicore” taught by

Prof. Kathy Yelick, UC Berkeley, Fall 2007
– http://www.cs.berkeley.edu/~yelick/cs194f07/

—“Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
Addison-Wesley 2009

—COMP 322 Lecture 1 handout

COMP 322, Spring 2012 (V.Sarkar)5

What is Parallel Computing?
• Parallel computing: using multiple processors in parallel to solve

problems more quickly than with a single processor and/or with
less energy

• Examples of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four

dual-core Chip Multi-Processors (CMPs)

Source: Figure 1.5 of Lin & Snyder
book, Addison-Wesley, 2009

CMP-0 CMP-1 CMP-2 CMP-3

COMP 322, Spring 2012 (V.Sarkar)6

What is Parallel Programming?
• Specification of operations

that can be executed in
parallel

• A parallel program is
decomposed into sequential
subcomputations called tasks

• Parallel programming
constructs define task
creation, termination, and
interaction

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

Task A Task B

COMP 322, Spring 2012 (V.Sarkar)7

Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

for (int i=0 ; i < X.length ; i++)

 sum += X[i];

Observations:

• The decision to sum up the
elements from left to right was
arbitrary

• The computation graph shows
that all operations must be
executed sequentially

Computation Graph

COMP 322, Spring 2012 (V.Sarkar)8

Parallelization Strategy for two cores

Basic idea:

• Decompose problem into two tasks for partial sums

• Combine results to obtain final answer

• Parallel divide-and-conquer pattern

+"

Task 0: Compute sum of
lower half of array

Task 1: Compute sum of
upper half of array

Compute total sum

COMP 322, Spring 2012 (V.Sarkar)

Example of a Parallel Program:
 Array Sum using async & finish constructs

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish {

4. async { // Task T1 computes sum of upper half of array

5. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

6. }

7. // Continue in T0 and compute sum of lower half of array

8. for(int i=0; i < X.length/2; i++) sum1 += X[i];

9. } // finish

10. // Task T0 waits for Task T1 (join)

11. return sum1 + sum2;

9

COMP 322, Spring 2012 (V.Sarkar)10

Async and Finish Statements for Task
Creation and Termination

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2012 (V.Sarkar)

All Computers are Parallel Computers

11

COMP 322, Spring 2012 (V.Sarkar)12

Moore’s Law

Resulted in CPU clock speed
doubling roughly every 18
months, but not any longer

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

COMP 322, Spring 2012 (V.Sarkar)13
CS194 Lecure 15

Current Technology Trends

Source: Intel, Microsoft (Sutter)
and Stanford (Olukotun, Hammond)

• Chip density is
continuing to increase
~2x every 2 years
—Clock speed is not
—Number of processors

is doubling instead

• Parallelism must be
managed by software

COMP 322, Spring 2012 (V.Sarkar)14

Parallelism Saves Power
Power = (Capacitance) * (Voltage)2 * (Frequency)

è Power α (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz è Power = 8P

Option B: Use 2 cores at 1 GHz each è Power = 2P

• Option B delivers same performance as Option A with 4x less
power … provided software can be decomposed to run in parallel!

COMP 322, Spring 2012 (V.Sarkar)15

Number of processors in the world’s
fastest computers during 2005-2011

Source: http://www.top500.org

0"

100"

200"

300"

400"

500"

600"

700"

800"

Nov.05" Nov.06" Nov.07" Nov.08" Nov.09" Nov.10" Nov.11"

N
um

be
r'o

f'p
ro
ce
ss
or
s'(
th
ou

sa
nd

s)
'

COMP 322, Spring 2012 (V.Sarkar)

Parallel Programming Challenges
• Correctness

—New classes of bugs can arise in parallel programming, relative to
sequential programming
– Data races, deadlock, nondeterminism

• Performance
—Performance of parallel program depends on underlying parallel system

– Language compiler and runtime system
– Processor structure and memory hierarchy
– Degree of parallelism in program vs. hardware

• Portability
—A buggy program that runs correctly on one system may not run

correctly on another (or even when re-executed on the same system)
—A parallel program that performs well on one system may perform

poorly on another

16

COMP 322, Spring 2012 (V.Sarkar)

Food for thought

• Consider adding async and finish keywords to any
sequential Java program that you’ve written
—Will the parallel version generate the same answer
as the sequential version?

—Will the output of the parallel version depend on
the order in which tasks execute their statements?

• Suppose you were given a parallel computer with an
unbounded number of processors
—How many async tasks can you create that can
execute at the same time?

17

COMP 322, Spring 2012 (V.Sarkar)18

COMP 322 Course Information: Spring 2012
• “Fundamentals of Parallel Programming”

• Lectures: MWF, 1pm – 1:50pm, DH 1070 (all sections)

• Labs (mandatory):
— Tuesdays, 4:00pm - 5:20pm (section A03)
— Wednesdays, 3:30pm - 4:50pm (section A02)
— Thursdays, 4:00pm - 5:20pm (section A01)

• Course Requirements:
—Homeworks (7) 50%
—Exams (2) 40%
—Lab attendance 10%

• HW1 is assigned today and is due on Friday, Jan 13th

