COMP 322: Fundamentals of
Parallel Programming

Vivek Sarkar
Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 1 9 January 2012

COMP 322 Course Information: Spring 2012

* “"Fundamentals of Parallel Programming”

Lectures: MWF, 1pm - 1:50pm, DH 1070 (all sections)
Labs (mandatory):

— Tuesdays, 4:00pm - 5:20pm (section AO3)

— Wednesdays, 3:30pm - 4:50pm (section AO2)

— Thursdays, 4:00pm - 5:20pm (section AO1)

Instructor: Vivek Sarkar (vsarkar@rice.edu)

Prerequisite: COMP 215 or equivalent
Cross-listing: ELEC 323

2 COMP 322, Spring 2012 (V.Sarkar)

Scope of Course

Fundamentals of parallel programming

— Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

— Abstract models of parallel computations and computation graphs
— Parallel algorithms & data structures including lists, trees, graphs, matrices

— Common parallel programming patterns

Habanero-Java (HJ) language, developed in the Habanero Multicore Software
Research project at Rice

Java Concurrency
Beyond HJ and Java: Map-Reduce, CUDA, MPI
Written assignments

Programming assignments
— Abstract metrics
— Real parallel systems (8-core Intel, Rice SUG@R system)

COMP 322, Spring 2012 (V.Sarkar) %

Lecture 1: The What and Why of Parallel Programming

« Acknowledgments

—CS 194 course on "Parallel Programming for Multicore” taught by
Prof. Kathy Yelick, UC Berkeley, Fall 2007

- http://www.cs.berkeley.edu/~yelick/cs194f07/

—"Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
Addison-Wesley 2009

—COMP 322 Lecture 1 handout

4 COMP 322, Spring 2012 (V.Sarkar) &

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with
less energy

« Examples of a parallel computer

— An 8-core Symmetric Multi-Processor (SMP) consisting of four
dual-core Chip Multi-Processors (CMPs)

RAM

L3 Cache

|
< Front side bus

=

l

l

l

COMP 322, Spring 2012 (V.Sarkar)

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1+ [L1-D| L1+t [L1-p || L1t || L1+t [Li-D || L1+t [Li-0] L1+t LD || L1+ [Li-p| L1+ [Li-D
Processor | Processor Processor | Processor Processor | Processor || Processor | Processor Source: Figur‘e 15 Of Lin & Snyder'
PO P1 P2 P P4 P P P7 book, Addison-Wesley, 2009

What is Parallel Programming?

« Specification of operations
that can be executed in
parallel

Task A Task B

* A parallel program is
decomposed into sequential
subcomputations called tasks

* Parallel programming
constructs define task N
creation, termination, and
interaction

I\ /|
e e S e

Schematic of a dual-core
Processor

6 COMP 322, Spring 2012 (V.Sarkar) &

Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

Computation Graph

for (int i=0 ; i1 < X.length ; i++)

sum += X[i]; O X[O]
Observations: X[1]
* The decision to sum up the

elements from left to right was X[2]

arbitrary é} /

* The computation graph shows
that all operations must be l
executed sequentially

7 COMP 322, Spring 2012 (V.Sarkar)

Parallelization Strategy for two cores

Task O: Compute sum of Task 1: Compute sum of
lower half of arr& upper half of array
®

l

Compute total sum

Basic idea:
« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

* Parallel divide-and-conquer pattern

8 COMP 322, Spring 2012 (V.Sarkar) @

Example of a Parallel Program:
Array Sum using async & finish constructs

1. // Start of Task TO (main program)

2. suml = 0; sum2 = 0; // suml & sum2 are static fields

3. finish {

4. async { // Task Tl computes sum of upper half of array
5. for (int i=X.length/2; i < X.length; i++) sum2 += X[i];
6. }

7. // Continue in TO and compute sum of lower half of array
8. for (int i=0; i < X.length/2; i++) suml += X[i];

9. } // finish

10. // Task TO waits for Task Tl (join)

11. return suml + sum2;

9 COMP 322, Spring 2012 (V.Sarkar)

Async and Finish Statements for Task
Creation and Termination

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish ({ //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2 ; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

10 COMP 322, Spring 2012 (V.Sarkar)

uters are Parallel Computers

Power Distribution Unit (PDU)

« Typical Capacities Up To 225 kVA Per u..“

« Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)

Colocation Suites
« Modular Configuration For
Flexible Suite Sq.Ft. Arcas,
 Suites Consist Of Multiple Cabincts Wi
Sccured Partitions (Cages, Walks, Etc.)

dg;" %
vices

Gl
o % < 3"‘
Heat Rejection Dﬂ% %
(N4

« Drycoalers, Air Cooled Chillers, Etc. Q}&ﬁ
* Up To 400 Ton Capacity Per Unit Q}&
« Mounted At Grade Or On Roof

+N¢1 Design

iPhone

11

aN>=0ID

1 gheh S G il chpt, ot B 4
Ao rdadie me. Toe exgnal a -
- = ==

LK

Thece are ey hes basks i heing whs
Vo ot e i sperm whale babuse

COMP 322, Spring 2012 (V.Sarkar)

Computer Air Handling Unit (CRAC)
+Up To 30 Ton Sensible Ca
.+ Air Discharge Can Be Upflow Or Downflow Configuration
«Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Pleaum With Floor Supply Diffusers

r Unit

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28"W x 36"D x 84°H)
+ Typical Capacities OF 1750 To 3750 Watts Per Cabinet

Emergency Diesel Generators
|+ Total Generator Capacity = Total Electrical Losd To Buikding
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
«Can Be Located Indoors Or Outdoors At Grade Or On Roof.
«Outdoor Applications Requite Sound Atienuating Enclosures

~ f Fuel Oil Storage Tanks
~ « Tank Capacity Dependant On Length
Of Generator Operation

Grade O Indoors

UPS System
« Uninterruptivle Power Supply Modules
+Up To 1000 KVA Per Module
« Cabinets And Battery Strings Or Rotary Flywhecls
« Multiple Redundancy Configurations Can Be Designed
Electrical Primary Switchgear
« Includes Incoming Service And Distribution

« Dircet Distribation To Mechanical Equipment

« Distribation To Sccondary Electrical Equipment Via UPS

Pump Room
+ Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units
« Additioral Equipment Includes Expansion Tank, Glycol Feed System
«N+1 Design (Standby Pump)

Moore’s Law

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

1975 1980 1985 1990 1995
r]
10M Micro. 500
(transistors) 2000 (mips)
™M 4 25
Pentium”
. __ Processor
80486
100K @.180386 10
BO2B6E
10K BOHE 0.1
BO80
v 0.01

4004

Resulted in CPU clock speed
doubling roughly every 18
months, but not any longer

12

COMP 322, Spring 2012 (V.Sarkar) &,

Current Technology Trends

10,000,000
 Chip density is
continuing to increase ...
~2X every 2 years
—Clock speed is not 100,000

—Number of processors
is doubling instead G600

* Parallelism must be
managed by software 1,000

100

10

= Transistors (000)

1- i e -
Source: Intel, Microsoft (Sutter) ol | | | | s Clock Speed (MHz)
‘ . g e | ; & Power (W)
and Stanford (Olukotun, Hammond) | | | | # Perf/Clock (ILP)
0 ‘ ' ‘ ‘ 1 ‘

13 C 1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelism Saves Power

Power = (Capacitance) * (Voltage)? * (Frequency)

=>» Power a (Frequency)?

Baseline example: single 16Hz core with power P

Option A: Increase clock frequency to 26Hz - Power = 8P
Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less
power ... provided software can be decomposed to run in parallel

A
/‘%\

14 COMP 322, Spring 2012 (V.Sarkar)

Number of processors in the world’s
fastest computers during 2005-2011

800

~
o
o

(o))
o
o

Ul
o
o

S
o
o

w
o
o

Number of processors (thousands)
N
o
o

100

Nov-O5 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10 Nov-11

Source: http://www.top500.0rg

15 COMP 322, Spring 2012 (V.Sarkar)

Parallel Programming Challenges

 Correctness

—New classes of bugs can arise in parallel programming, relative to
sequential programming

- Data races, deadlock, nondeterminism

* Performance
—Performance of parallel program depends on underlying parallel system
- Language compiler and runtime system
- Processor structure and memory hierarchy
- Degree of parallelism in program vs. hardware

* Portability

— A buggy program that runs correctly on one system may not run
correctly on another (or even when re-executed on the same system)

— A parallel program that performs well on one system may perform
poorly on another

16 COMP 322, Spring 2012 (V.Sarkar) &

Food for thought

* Consider adding async and finish keywords to any
sequential Java program that you've written

—W.ill the parallel version generate the same answer
as the sequential version?

—Will the output of the parallel version depend on
the order in which tasks execute their statements?
* Suppose you were given a parallel computer with an
unbounded number of processors

—How many async tasks can you create that can
execute at the same time?

17 COMP 322, Spring 2012 (V.Sarkar) &

COMP 322 Course Information: Spring 2012

* “Fundamentals of Parallel Programming”
« Lectures: MWF, 1pm - 1:.50pm, DH 1070 (all sections)

« Labs (mandatory):
— Tuesdays, 4:00pm - 5:20pm (section AO3)
— Wednesdays, 3:30pm - 4:50pm (section AO2)
— Thursdays, 4:00pm - 5:20pm (section AO1)
» Course Requirements:
—Homeworks (7) 50%
—Exams (2) 40%
—Lab attendance 10%
« HWI1 is assigned today and is due on Friday, Jan 13th

18 COMP 322, Spring 2012 (V.Sarkar)

