COMP 322: Fundamentals of
Parallel Programming

Lecture 1: The What and Why of
Parallel Programming

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 1 7 January 2013

COMP 322 Course Information: Spring 2013

"Fundamentals of Parallel Programming”
Lectures: MWF, 1pm - 1:50pm, Hertzstein 212
Labs, Ryon 102 (mandatory):

— Tuesdays, 4:00pm - 5:20pm (section AO3)

— Wednesdays, 3:30pm - 4:50pm (section AO2)
— Thursdays, 4:00pm - 5:20pm (section AO1)

Instructor: Vivek Sarkar (vsarkar@rice.edu)

TAs: Kumud Bhandari, Max Grossman, Deepak Majeti,
Annirudh Prasad, Rishi Surendran, Yunming Zhang

Prerequisite: COMP 215 or equivalent
Cross-listing: ELEC 323

COMP 322, Spring 2013 (V.Sarkar)

Scope of Course

* Fundamentals of parallel programming

— Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

— Abstract models of parallel computations and computation graphs
— Parallel algorithms & data structures including lists, trees, graphs, matrices

— Common parallel programming patterns

* Habanero-Java (HJ) as a pedagogic language, developed in the Habanero
Multicore Software Research project at Rice

e Java Concurrency
* Beyond HJ and Java: Map-Reduce, CUDA, MPI
* Weekly Lab and Lecture Quizzes

* Homeworks with written assignments and programming assignments
— Abstract metrics
— Real parallel systems (8-core Intel, Rice SUG@R system)

3 COMP 322, Spring 2013 (V.Sarkar) &

Lecture Modules

1. Deterministic Shared-Memory Parallelism: creation and coordination of
parallelism, collective & point-to-point synchronization (phasers, barriers),
abstract performance metrics (work, span, critical paths), Amdahl's Law,
weak vs. strong scaling, data races and determinism, data race avoidance
(immutability, futures, accumulators, dataflow), deadlock avoidance, abstract
vs. real performance (granularity, scalability), parallel sorting algorithms.

2. Nondeterministic Shared-Memory Parallelism and Concurrency: critical
sections, atomicity, isolation, high level data races, nondeterminism,
linearizability, liveness/progress guarantees, actors, request-response
parallelism

3. Distributed-Memory Parallelism and Locality: memory hierarchies, cache
affinity, false sharing, message-passing (MPI), communication overheads
(bandwidth, latency), MapReduce, systolic arrays, accelerators, GPGPUs.

4. Current Practice — today's Parallel Programming Models and Challenges: Java
Concurrency, locks, condition variables, semaphores, memory consistency

models, comparison of parallel programming models (.Net Task Parallel
Library, OpenMP, CUDA, OpenCL). energy efficiency, data movement,
resilience.

4 COMP 322, Spring 2013 (V.Sarkar) :

Outline of Today’s Lecture

 Introduction

* Async-Finish Parallel Programming

« Acknowledgments

—CS 194 course on "Parallel Programming for Multicore” taught by
Prof. Kathy Yelick, UC Berkeley, Fall 2007

- http://www.cs.berkeley.edu/~yelick/cs194f07/

—"Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
Addison-Wesley 2009

—COMP 322 Module 1 handout, Sections 1.1, 1.2, 2.1, 2.2

- https://svn.rice.edu/r/comp322/course/
modulel-2013-01-06.pdf

A
5 COMP 322, Spring 2013 (V.Sarkar) %

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with
less energy

« Examples of a parallel computer

— An 8-core Symmetric Multi-Processor (SMP) consisting of four
dual-core Chip Multi-Processors (CMPs)

RAM

L3 Cache

|
< Front side bus

=

l

l

l

COMP 322, Spring 2013 (V.Sarkar)

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1+ [L1-D| L1+t [L1-p || L1t || L1+t [Li-D || L1+t [Li-0] L1+t LD || L1+ [Li-p| L1+ [Li-D
Processor | Processor Processor | Processor Processor | Processor || Processor | Processor Source: Figur‘e 15 Of Lin & Snyder'
PO P1 P2 P P4 P P P7 book, Addison-Wesley, 2009

Number of processors in the world’s
fastest computers during 2005-2011

800

~
o
o

(o))
o
o

Ul
o
o

S
o
o

w
o
o

Number of processors (thousands)
N
o
o

100

Nov-O5 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10 Nov-11

Source: http://www.top500.0rg

7 COMP 322, Spring 2013 (V.Sarkar)

All Computers are Parallel Computers ---
Why?

Computer Air Handling Unit (CRAC)
+Up To 30 Ton Sensible Ca
.+ Air Discharge Can Be Upflow Or Downflow Configuration
«Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Pleaum With Floor Supply Diffusers

r Unit

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28"W x 36"D x 84°H)

Power Distribution Unit (PDU)
'W + Typical Capacities Of 1750 To 3750 Watts Per Cabinet

« Typical Capacities Up To 225 KVA Per Uni
« Redundancy Through Dual PDU's With
Integral Static Trassfer Switch (STS)

Emergency Diesel Generators
|+ Total Generator Capacity = Total Electrical Losd To Buikding
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
«Can Be Located Indoors Or Outdoors At Grade Or On Roof.
«Outdoor Applications Requite Sound Atienuating Enclosures

~ f Fuel Oil Storage Tanks
~ « Tank Capacity Dependant On Length
Of Generator Operation

i
UPS System

« Uninterruptible Power Supply Modules
+Up To 1000 kVA Per Module

« Cabinets And Battery Strings Or Rotary Flywheels.

« Multiple Redundancy Configurations Can Be Designed

q".':" Electrical Primary Switchgear
vices

b, 8
S U3
7 g
f &, « Includes Incoming Service And Distribution
&5 « Dircct Distribution To Mechanical Equipment
% « Distribation To Secondary Electrical Equipment Via UPS
N K:)#%? Pump Room

Grade O Indoors

Colocation Suites
« Modular Configuration For
Flexible Suite Sq.Ft. Arcas,
 Suites Consist Of Multiple Cabincts Wi
Sccured Partitions (Cages, Walks, Etc.)

Heat Rejection Dev

« Drycooles, Air Cooed Chilr,Ete. . CGAE « Used To Pump Condenser/Chilled Water Between Diycoolers And CRAC Units

3 + Additional Equipment Includes Expansion Tank, Glycol Feed System
+ Up To 400 Ton Capacity Per Unit u Y
* Mounted At Girade Or On Roof N+1 Design (Standby Pump)
+N¢1 Design

aN>=0ID

1 gheh S G il chpt, ot B 4
Ao rdadie me. Toe exgnal a -
- = ==

iPhone \Q\)"
w).

Thece are ey hes basks i heing whs
Vo ot e i sperm whale babuse

8 COMP 322, Spring 2013 (V.Sarkar) &,

Moore’s Law

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

1975 1980 1985 1990 1995
r]
10M Micro. 500
(transistors) 2000 (mips)
™M 4 25
Pentium”
. __ Processor
80486
100K @.180386 10
BO2B6E
10K BOHE 0.1
BO80
v 0.01

4004

Resulted in CPU clock speed
doubling roughly every 18
months, but not any longer

2 COMP 322, Spring 2013 (V.Sarkar) &,

Current Technology Trends

10,000,000
 Chip density is
continuing to increase ...
~2X every 2 years
—Clock speed is not 100,000

—Number of processors
is doubling instead G600

* Parallelism must be
managed by software 1,000

100

10

= Transistors (000)

1- i e -
Source: Intel, Microsoft (Sutter) ol | | | | s Clock Speed (MHz)
‘ . g e | ; & Power (W)
and Stanford (Olukotun, Hammond) | | | | # Perf/Clock (ILP)
0 ‘ ' ‘ ‘ 1 ‘

10 C 1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelism Saves Power
(Simplified Analysis)

Power = (Capacitance) * (Voltage)? * (Frequency)

=>» Power is proportional to (Frequency)?

Baseline example: single 16Hz core with power P

Option A: Increase clock frequency to 26Hz - Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less

power ... provided software can be decomposed to run in parallel

11 COMP 322, Spring 2013 (V.Sarkar)

A
@)}

A Real World Example

« Fermi vs. Kepler GPU chips from NVIDIA's GeForce 600 Series
—Source: http://www.theregister.co.uk/2012/05/15/

nvidia kepler tesla gpu revealed/

Fermi chip (released
in 2010)

Kepler chip (released
in |3012) P

Number of cores 512 1,536
Clock frequency 1.3 6Hz 1.0 6Hz
Power 250 Watts 195 Watts

Peak double ‘Pr'ecision
floating poin
performance

665 Gigaflops

1310 Gigaflops
(1.31 Teraflops)

12

COMP 322, Spring 2013 (V.Sarkar)

What is Parallel Programming?

« Specification of operations
that can be executed in
parallel

Task A Task B

* A parallel program is
decomposed into sequential
subcomputations called tasks

* Parallel programming
constructs define task N
creation, termination, and
interaction

I\ /|
e e S e

Schematic of a dual-core
Processor

13 COMP 322, Spring 2013 (V.Sarkar) &

Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

Computation Graph

for (int i=0 ; i1 < X.length ; i++)

sum += X[i]; O X[O]
Observations: X[1]
* The decision to sum up the

elements from left to right was X[2]

arbitrary é} /

* The computation graph shows
that all operations must be l
executed sequentially

14 COMP 322, Spring 2013 (V.Sarkar)

Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Task O: Compute sum of Task 1: Compute sum of
lower half of arr& upper half of array
®

l

Compute total sum

Basic idea:
« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

* Parallel divide-and-conquer pattern

15 COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

e Introduction

» Async-Finish Parallel Programming

16 COMP 322, Spring 2013 (V.Sarkar)

Async and Finish Statements for Task
Creation and Termination

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish ({ //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2 ; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

17 COMP 322, Spring 2013 (V.Sarkar)

Two-way Parallel Array Sum
using async & finish constructs

// Start of Task TO (main program)
suml = 0; sum2 = 0; // suml & sum2 are static fields
async { // Task Tl computes sum of upper half of array
for (int i=X.length/2; i < X.length; i++)
sum2 += X[1i];
}
// TO computes sum of lower half of array
for (int i=0; i < X.length/2; i++) suml += X[i];
. // Task TO waits for Task Tl (join)

= W o J o O b w N

0. return suml + sum2;)

Where does finish go?
Time for worksheet #1|

18 COMP 322, Spring 2013 (V.Sarkar) &,

Some Properties of Async & Finish constructs

1. Scope of async/finish can be any arbitrary statement
— async/finish constructs can be arbitrarily nested e.g.,
— finish { async S1; finish { async S2; S3; } S4; } S5;

2. A method may return before all its async's have terminated
— Enclose method body in a finish if you don't want this to happen
— main() method is enclosed in an implicit finish e.g.,

— main(){ foo();} wvoid foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing
Finish (IEF) at runtime
4. Async/finish constructs cannot “deadlock”

— Cannot have a situation where both task A waits for task B to finish,
and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
— Local variables have special restrictions

19 COMP 322, Spring 2013 (V.Sarkar) &,

COMP 322 Course Information: Spring 2013
« IMPORTANT:

1. Send email to comp322-staff@mailman.rice.edu if you did
NOT receive a welcome email from us

2. Apply for a Coursera account and send the email address
for your account to comp322-staff@mailman.rice.edu

* We will use Coursera for on-line quizzes & discussions
e Course Requirements:

—Homeworks (6) 40% (written + programming components)

—Exams (2) 40% (take-home written exams)

—Weekly Quizzes 10% (one lecture + one lab quiz per week)

—Class Participation 10% (lecture worksheets, lab attendance,
classroom & on-line discussions, Q&A)

 HW1 will be assigned on Jan 9th and be due on Jan 23rd

20

COMP 322, Spring 2013 (V.Sarkar) A

Worksheet #1 (to be done individually or in pairs):
Insert finish to get correct Two-way Parallel Array Sum program

Name 1: Name 2:

1 // Start of Task TO (main program)

2 suml = 0; sum2 = 0; // suml & sum2 are static fields
3 async { // Task Tl computes sum of upper half of array
4 for (int i=X.length/2; i < X.length; i++)

5. sum2 += X[i];

© }

7 // TO computes sum of lower half of array

8 for (int i=0; i < X.length/2; i++) suml += X[i];

9. // Task TO waits for Task Tl (join)

10. return suml + sum2;

21 COMP 322, Spring 2013 (V.Sarkar) %ﬂ

