
COMP 322: Fundamentals of
Parallel Programming

Lecture 10: Abstract vs. Real
Performance (contd), seq clause

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 10 1 February 2013

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Abstract vs. Real performance (contd)

• seq clause in async statements

Acknowledgments

• COMP 322 Module 1 handout, Sections 9.1, 9.2, 9.3.

2

COMP 322, Spring 2013 (V.Sarkar)

Recap of 2-processor schedule of a Computation
Graph studied in Lecture 3 (slide 11)

1

1

10

A

B C

F

1

1 110 1D E

This schedule was obtained by mapping
computation graph nodes to processor
assuming:
1. Non-preemption (no context switch in the
middle of a node)
2. Greedy schedule (a processor is never idle
if work is available)
There may be multiple possible schedules
with these assumptions

Start
time

Proc 1 Proc 2

0 A
1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D C
12 E
13

Schedule with execution time, T2 = 13

3

COMP 322, Spring 2013 (V.Sarkar)

Two possible HJ programs for this
Computation Graph (there can be others ...)

1

1

10

A

B C

F

1

1 110 1D E

 // Program Q1

 A;

 finish {

 async { B; D; }

 async F;

 async { C; E; }

 }

There is no significance to the
left-to-right ordering of edges in a
computation graph, which is why
there can be multiple parallel
programs for the same
computation graph

 // Program Q2

 A;

 finish {

 async { C; E; }

 async F;

 async { B; D; }

 }

4

COMP 322, Spring 2013 (V.Sarkar)

Recap of Work-first vs. Help-first
work-stealing policies

• When encountering an async
• Help-first policy

• Push async on “bottom” of local queue,
and execute next statement

• Work-first policy
• Push continuation (remainder of task

starting with next statement) on
“bottom” of local queue, and execute
async

• When encountering the end of a finish scope
• Help-first policy & Work-first policy

• Store continuation for end-finish
• Will be resumed by last async to

complete in finish scope
• Pop most recent item from “bottom” of

local queue
• If local queue is empty, steal from “top”

of another worker’s queue

w1 w2 w3

Stealing by w2 and w3

w1 w2 w3

Local push/pop by w1

“top”

“bottom”

5

COMP 322, Spring 2013 (V.Sarkar)

Scheduling Program Q1 using a
Work-First Work-Stealing Scheduler

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q1

2. A; // Executes on P1

3. finish {

4. // P1 pushes continuation for 9,

5. // and executes 6

6. async { B; D; }

7. // P2 pushes continuation for 11,

8. // and executes 9

9. async F;

10. // P2 executes 11

11. async { C; E; }

12. }

Start
time

Proc 1 Proc 2

0 A
1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D C
12 E
13

6

COMP 322, Spring 2013 (V.Sarkar)

Scheduling Program Q1 using a
Help-First Work-Stealing Scheduler

1

1

10

A

B C

F

1

1 110 1D E
1. // Program Q1

2. A; // Executes on P1

3. finish {

4. // P1 pushes 6, which is then

5. // stolen by P2

6. async { B; D; }

7. // P1 pushes 8

8. async F;

9. // P1 pushes 10

10. async { C; E; }

11. }

12. // P1 stores continuation and pops 10

13. // P1 pops 8

Start
time

Proc 1 Proc 2

0 A
1 C B
2 E D
3 F D
4 F D
5 F D
6 F D
7 F D
8 F D
9 F D

10 F D
11 F D
12 F
13

7

Let’s try
more of
this in
Worksheet
#10 !

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #9: Continuations and Work-
First vs. Help-First Work-Stealing Policies

For each of the continuations below, label it as “WF” if a work-first worker
can switch tasks at that point and as “HF” if a help-first worker can switch
tasks at that point. Some continuations may have both labels.

1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Continuations

WF

WF
WF
WF, HF

WF, HF

8

COMP 322, Spring 2013 (V.Sarkar)

Work-Sharing vs. Work-Stealing
Scheduling Paradigms (Recap)

• Work-Sharing
—Busy worker eagerly distributes new work
—Easy implementation with global task pool
—Access to the global pool needs to be

synchronized: scalability bottleneck

• Work-Stealing
—Busy worker incurs little overhead to create

work
—Idle worker “steals” the tasks from busy

workers
—Distributed task pools lead to improved

scalability
—When task Τa spawns Τb, the worker can

–stay on Τa, making Τb available for execution
by another processor (help-first policy), or

–start working on Τb first (work-first policy)

w1 w2 w3 w4

push
task

pull
task

w1 w2 w3

work-sharing

work-stealing runtime

steal task

9 9

COMP 322, Spring 2013 (V.Sarkar)

Iterative Fork-Join Microbenchmark

Single-Worker execution times to model overhead (Section 9.2.1)

• k = number of tasks

• ts(k) = sequential time

• t1
wf(k) = 1-worker time for work-stealing with work-first policy

• t1
hf(k) = 1-worker time for work-stealing with help-first policy

• t1
ws(k) = 1-worker time for work-sharing

• Java-thread(k) = create a Java thread for each async

1. finish {
2. for (int i=1; i<k; i++)
3. async Ti; // task i
4. T0; //task 0
5. }

11
10

COMP 322, Spring 2013 (V.Sarkar)

 Fork-Join Microbenchmark Measurements
(execution time in micro-seconds)

NOTE: Help-First usually performs better than Work-First on this benchmark
when the number of workers is > 1, but not in this single-worker case

11

COMP 322, Spring 2013 (V.Sarkar)

Q: Why do we have different schedulers?

A: Because they have different performance & functional characteristics

DrHJ compiler
option

SUMMARY Functional
limitations

Performance
characteristics

work-sharing
(Default option)

1) Supports full lang
2) Supports perf
metrics

3) Creates additional
worker threads when a
task blocks

work-sharing
(Fork-Join variant)

1) + 2) 3) + 4) may perform
better than work-sharing
for recursive parallelism

work-stealing
(Help-First policy)

5) Only supports
async, finish,
forasync, isolated,
atomic vars

6) Fixed number of
worker threads
7) better for loop
parallelism

work-stealing
(Work-First policy)

5) + 8) Supports data
race detection

6) + 9) better for
recursive parallelism

work-stealing
(Adaptive policy)

Same as 5) 10) automatically
chooses between help-
first and work-first
policies

cooperative
(under development)

Currently supports 5) +
Futures --- goal is to
support everything!

Same as 6)

Supports full HJ
language, but can
lead to “max
threads” error.

Supports restricted
HJ language, but
avoids “max
threads” error.

Holy Grail --- full
HJ without “max
threads” error!

12

COMP 322, Spring 2013 (V.Sarkar)

Scheduling Policies Currently Available in HJ
DrHJ compiler

option
Command-line

option
Functional

characteristics
Performance

characteristics
work-sharing
(Default option)

Compile: hjc -rt s (default)
Runtime: hj
 (no option needed)

1) Supports full lang
2) Supports perf
metrics

3) Creates additional
worker threads when a
task blocks

work-sharing
(Fork-Join variant)

Compile: hjc -rt s (default)
Runtime: hj -fj

1) + 2) 3) + 4) may perform
better than work-sharing
for recursive parallelism

work-stealing
(Help-First policy)

Compile: hjc -rt h
Runtime: hj
 (no option needed)

5) Only supports
async, finish,
forasync, isolated,
atomic vars

6) Fixed number of
worker threads
7) better for loop
parallelism

work-stealing
(Work-First policy)

Compile: hjc -rt w
Runtime: hj
 (no option needed)

5) + 8) Supports data
race detection

6) + 9) better for
recursive parallelism

work-stealing
(Adaptive policy)

Compile: hjc -rt h
Runtime: hj
 (no option needed)

Same as 5) 10) automatically chooses
between help-first and
work-first policies on each
async

cooperative
(under development)

Compile: hjc -rt c
Runtime: hj
 (no option needed)

Currently supports 5) +
Futures --- goal is to
support everything!

Same as 6)

13

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

Acknowledgments

• COMP 322 Module 1 handout, Sections 9.1, 9.2, 9.3.

14

1. static int computeSum(int[] X, int lo, int hi) {

2. if (lo > hi) return 0;

3. else if (lo == hi) return X[lo];

4. else {

5. int mid = (lo+hi)/2;

6. final future<int> sum1 =

7. async<int> { return computeSum(X, lo, mid); };

8. final future<int> sum2 =

9. async<int> { return computeSum(X, mid+1, hi); };

10. // Parent now waits for the container values

11. return sum1.get() + sum2.get();

12. }

13. } // computeSum

14. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2013 (V.Sarkar)

Problem: creating too many small async tasks
can be a source of overhead (ArraySum2)

Creating one async per tree node leads to too many tasks!

15

// Minimum size for which an async task is justified

int thresholdSize = 1000000;

. . .

int mid = (lo+hi)/2;

int size = hi - lo + 1;

if (size < thresholdSize) { // Sequential case

 sum1 = computeSum(X, lo, mid); sum2 = computeSum(X, mid+1, hi);

}

else { // Parallel case --- pseudocode

 sum1 = async computeSum(X, lo, mid); sum2 = async computeSum(X, mid+1,

hi);

}

. . .

• The “size < thresholdSize” condition ensures that async tasks are only created for upper
nodes in the reduction tree; lower nodes (closer to the leaves) are executed sequentially.

• A large thresholdSize value leads to larger async tasks with less (shallower) parallelism

• A small thresholdSize value leads to smaller async tasks with more (deeper) parallelism

COMP 322, Spring 2013 (V.Sarkar)

Common fix in parallel divide-and-conquer
algorithms --- add a “threshold” test

16

COMP 322, Spring 2013 (V.Sarkar)

seq clause in HJ async statement

1. // Non-Future example

2. async seq(size < thresholdSize) computeSum(X, lo, mid);

3.

4. // Future example

5. final future<int> sum1 = async<int> seq(size < thresholdSize)

6. { return computeSum(X, lo, mid); };

• “seq” clause specifies condition under which async should be executed
sequentially

• False ⇒ an async is created

• True ⇒ the parent executes async body sequentially

• Avoids the need to duplicate code for both cases
• Also simplifies use of final variables (needed for futures)

17

1. static int thresholdSize = 1000000;

2. . . .

3. static int computeSum(int[] X, int lo, int hi) {

4. if (lo > hi) return 0;

5. else if (lo == hi) return X[lo];

6. else {

7. int mid = (lo+hi)/2; size = hi-lo+1;

8. final future<int> sum1 = async<int> seq(size < thresholdSize)

9. { return computeSum(X, lo, mid); };

10. final future<int> sum1 = async<int> seq(size < thresholdSize)

11. { return computeSum(X, mid+1, hi); };

12. // Parent now waits for the container values

13. return sum1.get() + sum2.get();

14. }

15. } // computeSum

16. . . .

17. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2013 (V.Sarkar)

Use of seq clause in ArraySum2

18

COMP 322, Spring 2013 (V.Sarkar)

Threshold Condition depends on application

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board
a = []

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

a = [0 3 1]
a = [1 3 0]

a = [1 3 0 2]

cutoff
depth = 1

async async

19

COMP 322, Spring 2013 (V.Sarkar)

Parallel Solution to NQueens with Finish
Accumulator and seq clause

1. static accumulator count;

2. . . .

3. count = accumulator.factory.accumulator(SUM, int.class);

4. finish(a) nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count.get().intValue());

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count.put(1);

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) async seq(depth >= cutoff) {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

20

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #10: Scheduling Program Q2 using a
Work-First & Help-First Schedulers

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q2

2. A;

3. finish {

4. async { C; E; }

5. async F;

6. async { B; D; }

7. }

Start
time

Proc 1 Proc 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Name 1: ___________________
Name 2: ___________________

Work-First Schedule

Complete work-first and help-first
schedules for the program shown below
(using step times from the computation
graph)

21

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #10: Scheduling Program Q2 using a
Work-First & Help-First Schedulers (contd)

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q2

2. A;

3. finish {

4. async { C; E; }

5. async F;

6. async { B; D; }

7. }

Start
time

Proc 1 Proc 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Help-First Schedule

22

