COMP 322: Fundamentals of
Parallel Programming

Lecture 10: Abstract vs. Real
Performance (contd), seq clause

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

COMP 322 Lecture 10 1 February 2013 %ﬁ

Outline of Today’s Lecture

« Abstract vs. Real performance (contd

e seq clause in async statements

Acknowledgments

e COMP 322 Module 1 handout, Sections 9.1, 9.2, 9.3.

2 COMP 322, Spring 2013 (V.Sarkar) %ﬂ

Recap of 2-processor schedule of a Computation
Graph studied in Lecture 3 (slide 11)

AT
B 1 ¢
p@ @ E

This schedule was obtained by mapping
computation graph nodes to processor

assuming:

1. Non-preemption (no context switch in the

middle of a node)

2. Greedy schedule (a processor is never idle

if work is available)

There may be multiple possible schedules

with these assumptions

Schedule with execution time, T,=13

10 F

tSi:ralgt Proc1 |Proc 2

0 A

1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F
10 D F
1 D C
12 E
13

COMP 322, Spring 2013 (V.Sarkar)

A

Two possible HJ programs for this
Computation Graph (there can be others ...)

ﬂl’here is no significance to the A
left-to-right ordering of edges in a
computation graph, which is why
there can be multiple parallel
programs for the same

\computation graph Y

// Program Q1 // Program Q2
A; Aj
finish { finish {

async { B; D; } async { C; E; }

async F; async F;

async { C; E; } async { B; D; }
} }

4 COMP 322, Spring 2013 (V.Sarkar) %

Recap of Work-first vs. Help-first
work-stealing policies

* When encountering an async

* Help-first policy \or’
* Push async on “bottom” of local queue,)))
and execute next statement (((
e Work-first policy ", ", W3 epottomn”
* Push continuation (remainder of task A

starting with next statement) on

“bottom” of local queue, and execute Local push/pop by w,

async
* When encountering the end of a finish scope
* Help-first policy & Work-first policy Stealing by W, and W5
e Store continuation for end-finish
e Will be resumed by last async to) N) N
complete in finish scope)
* Pop most recent item from “bottom” of (((
local queue
1 W, Ws3

e If local queue is empty, steal from “top”
of another worker’s queue

5 COMP 322, Spring 2013 (V.Sarkar) %\m‘

Scheduling Program Q1 using a
Work-First Work-Stealing Scheduler

AD)
o
D @ E @ F

. // Program Q1

. A; // Executes on Pl

. finish {

// Pl pushes continuation for 9,
// and executes 6

async { B; D; }

// P2 pushes continuation for 11,
// and executes 9

async F;

10. // P2 executes 11

11. async { C; E; }

O 00O N O VT A W N B

Start
time

Proc 1

Proc 2

>

O |NOoO|g |~ |WIN|=|OC

-
o

=N
-_—

O|0O|O(0O0|0O0(0|O0 |0 |00 (0

-
N

m(O|mMm[(MmMM (M |mM[(mMmM ||| (T

-
w

6 COMP 322, Spring 2013 (V.Sarkar)

Scheduling Program Q1 using a
Help-First Work-Stealing Scheduler

AQ)
B @ ¢
D @ E @ F

. // Program Ql

. A; // Executes on Pl
. finish {

// Pl pushes 6, which is then
// stolen by P2
async { B; D; }

// Pl pushes 8
async F;

// Pl pushes 10
10. async { C; E; }
11. }

O 0O N O VT A W N

Start
time

Proc 1

Proc 2

>

O |NOoO|g |~ |WIN|=|OC

-
o

=N
-_—

O|0O|O(0O0|0O0(0|O0|0 |00 (0

-
N

MMM MM(M MMM [(M|M[O

r N
Let's try
more of
this in
Worksheet
#10 |

_ Y,

12. // Pl stores continuation and pops 10

13. // Pl pops 8

-
w

7 COMP 322, Spring 2013 (V.Sarkar)

Worksheet #9: Continuations and Work-
First vs. Help-First Work-Stealing Policies

For each of the continuations below, label it as “WF” if a work-first worker
can switch tasks at that point and as “HF” if a help-first worker can switch
tasks at that point. Some continuations may have both labels.

1.finish { // F1

2. async Al; WF

3. finish { // F2

4, async A3; WF

5. async A4<' WF

6. 1} < WF, HF
/. S5;

8.} < WF, HF

Continuations

TG
8 COMP 322, Spring 2013 (V.Sarkar) Z\x‘

Work-Sharing vs. Work-Stealing
Scheduling Paradigms (Recap)

e Work-Sharing
—Busy worker eagerly distributes new work
—Easy implementation with global task pool

pull
task

—Access to the global pool needs to be pus
synchronized: scalability bottleneck e)))
e Work-Stealing ((((
—Busy worker incurs little overhead to create
work Wi W W W4
—Idle worker “steals” the tasks from busy work-sharing
workers steal task
—Distributed task pools lead to improved N N
scalability))
—When task T, spawns T,, the worker can (((
—stay on T,, making T, available for execution w, W,

by another processor (help-first policy), or

—start working on T, first (work-first policy) work-stealing runtime

9 COMP 322, Spring 2013 (V.Sarkar) D

Iterative Fork-Join Microbenchmark

finish {
for (int i=1; i<k; i++)
async Ti; // task 1
TO0; //task O

UIhWN R

}

Single-Worker execution times to model overhead (Section 9.2.1)
e k =number of tasks

t.(k) = sequential time

o t,%i(k) =1-worker time for work-stealing with work-first policy
o t,"(k) = 1-worker time for work-stealing with help-first policy
e t,%s(k) =1-worker time for work-sharing

e Java-thread(k) = create a Java thread for each async

11 COMP 322, Spring 2013 (V.Sarkar) N

Fork-Join Microbenchmark Measurements
(execution time in micro-seconds)

k | to(k) | t¥7(k) | ¢+7(k) | t¥s(k) | Java-thread(k)
1 0.11 0.21 0.22
2 0.22 0.44 2.80
4 0.44 0.88 2.95
8 0.90 1.96 3.92 335 3,600
16 1.80 3.79 0.28
32 3.60 7.15 10.37
04 7.17 14.59 19.61
128 | 1447 | 28.34 | 36.31| 2,600 63,700
256 28.93 56.75 73.16
512 57.53 | 114.12 | 148.61
1024 | 114.85 | 270.42 | 347.83 | 22,700 768,000

NOTE: Help-First usually performs better than Work-First on this benchmark

<

>

when the number of workers is > 1, but not in this single-worker case

11

COMP 322, Spring 2013 (V.Sarkar)

Q: Why do we have different schedulers?

A: Because they have different performance & functional characteristics

DrHJ compiler

option

work-sharing
(Default option)

work-sharing
(Fork-Join variant)

SUMMARY

Supports full HJ
language, but can
lead to “max
threads” error.

Functional

IITNIRCALIVIE D

1) Supports full lang
2) Supports perf
metrics

Performance

VIIUI UAVLGT I9LIVD

3) Creates additional
worker threads when a
task blocks

1) +2)

work-stealing
(Help-First policy)

work-stealing
(Work-First policy)

work-stealing
(Adaptive policy)

Supports restricted
HJ language, but
avoids “max
threads” error.

async, finish,
forasync, isolated,
atomic vars

3) + 4) may perform
better than work-sharing

for recursive parallelism
: 5) Only supports 6) Fixed number of \

worker threads
7) better for loop
parallelism

-

5) + 8) Supports data
race detection

6) + 9) better for
recursive parallelism

Same as 5)

10) automatically
chooses between help-
first and work-first

cooperative
(under development)

12

Holy Grail --- full
HJ without “max
threads” error!

Currently supports 5) +
Futures --- goal is to
support everything!

Same as 6)

COMP 322, Spring 2013 (V.Sarkar)

Scheduling Policies Currently Available in HJ

DrHJ compiler

Command-line

Functional

Performance

option

work-sharing
(Default option)

option
Compile: hjc -rt s (default)
Runtime: hj
(no option needed)

characteristics
1) Supports full lang
2) Supports perf
metrics

characteristics

3) Creates additional
worker threads when a
task blocks

work-sharing
(Fork-Join variant)

Compile: hjc -rt s (default)
Runtime: hj -fj

1) +2)

3) + 4) may perform
better than work-sharing
for recursive parallelism

work-stealing
(Help-First policy)

Compile: hjc -rt h
Runtime: hj
(no option needed)

5) Only supports
async, finish,
forasync, isolated,
atomic vars

6) Fixed number of
worker threads

7) better for loop
parallelism

work-stealing
(Work-First policy)

Compile: hjc -rt w
Runtime: hj
(no option needed)

5) + 8) Supports data
race detection

6) + 9) better for
recursive parallelism

work-stealing
(Adaptive policy)

Compile: hjc -rt h
Runtime: hj
(no option needed)

Same as 5)

10) automatically chooses
between help-first and
work-first policies on each
async

cooperative
(under development)

Compile: hjc -rt ¢
Runtime: hj
(no option needed)

Currently supports 5) +
Futures --- goal is to
support everything!

Same as 6)

13

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

e Abstract vs. Real performance

e seq clause in async statements

Acknowledgments

e COMP 322 Module 1 handout, Sections 9.1, 9.2, 9.3.

14 COMP 322, Spring 2013 (V.Sarkar) %\S

Problem: creating too many small async tasks

O 00 N OY LT A W N R

el e
w N R O -

14.

15

} // computeSum
int sum = computeSum(X,

can be a source of overhead (ArraySumz2)

static int computeSum(int[] X, int lo, int hi) {

if (To > hi) return O;
else if (To == hi) return X[lo];
else {
int mid = (lo+hi)/2;
final future<int> suml =
async<int> { return computeSum(X, lo, mid); };
final futuredjnt> sum2 =
async<intX { return computeSum(X, mid+1l, hi); };
// Parent Wow wa\ts for the container values
return suml. sum2.get();

}

COMP 322, Spring 2013 (V.Sarkar)

Common fix in parallel divide-and-conquer
algorithms --- add a “threshold” test

// Minimum size for which an async task is justified
int thresholdsize = 1000000;

int mid = (lo+hi)/2;
int size = hi - 1o + 1;
if (size < thresholdsize) { // Sequential case
suml = computeSum(X, lo, mid); sum2 = computeSum(X, mid+1l, hi);
¥
else { // Parallel case --- pseudocode
suml = async computeSum(X, lo, mid); sum2 = async computeSum(X, mid+1,
hi);
}

e The “size < thresholdSize” condition ensures that async tasks are only created for upper
nodes in the reduction tree; lower nodes (closer to the leaves) are executed sequentially.

e Alarge thresholdSize value leads to larger async tasks with less (shallower) parallelism

e A small thresholdSize value leads to smaller async tasks with more (deeper) parallelism

16 COMP 322, Spring 2013 (V.Sarkar) D

seg clause in HJ async statement

async seq(cond) <stmt> = if (cond) <stmt> else async <stmt>

. // Non-Future example
. async seq(size < thresholdSize) computeSum(X, lo, mid);

. // Future example
. final future<int> suml = async<int> seq(size < thresholdsize)

SO v A W IN R

{ return computeSum(X, lo, mid); };

* “seq” clause specifies condition under which async should be executed
sequentially
* False = an async is created

* True = the parent executes async body sequentially

¢ Avoids the need to duplicate code for both cases
¢ Also simplifies use of final variables (needed for futures)

17 COMP 322, Spring 2013 (V.Sarkar) D

Use of seq clause in ArraySum2

1. static int thresholdsize = 1000000;

2. . . .

3. static int computeSum(int[] X, int lo, int hi) {

4. if (To > hi) return O;

5. else if (1o == hi) return X[1o];

6. else {

7. int mid = (lo+hi)/2; size = hi-lo+1;

8. final future<int> suml = async<int> seq(size < thresholdsize)
9. { return computesum(X, lo, mid); };
10. final future<int> suml = async<int> seq(size < thresholdSize)
11. { return computeSum(X, mid+1l, hi); };
12. // Parent now waits for the container values

13. return suml.get() + sum2.get();

14. }

15. } // computeSum

16.

17. int sum = computeSum(X, 0, X.length-1); // main program

18 COMP 322, Spring 2013 (V.Sarkar) D

Threshold Condition depends on application

a=[]
empty board
async async
a=[0] LLLI 1| a=[1] cutoff
-~ depth =1
place 15t queen Q v
a=1[02] a=1[023] = [1 3]
Q Q
place 2" queen - ©
Q Q
a=[130]
place 3" queen a=[031] 3 ar T
Q Q
a=[1302]
Q
place 4" queen Q _
Q

19 COMP 322, Spring 2013 (V.Sarkar) %\%\‘

Parallel Solution to NQueens with Finish
Accumulator and seq clause

1. static accumulator count;

2.

3. count = accumulator.factory.accumulator(SuM, int.class);

4. finish(a) nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count.get().intvalue());
6.

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count.put(l);

9. else

10. /* try each possible position for queen at depth */

11. for (int 1 = 0; 1 < size; i++) async seq(depth >= cutoff) {
12. /* allocate a temporary array and copy array a into it */
13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = 1;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // ngqueens_kernel ()

20 COMP 322, Spring 2013 (V.Sarkar) /@&

Worksheet #10: Scheduling Program Q2 using a

Work-First & Help-First Schedulers

Name 1:
Name 2:

Complete work-first and help-first
schedules for the program shown below
(using step times from the computation

graph)

1. // Program Q2
2. A;
3. finish {

l 4. async { C; E; }
5 async F;
6 async { B; D; }
7.}

Work-First Schedule

Start
time

Proc 1

Proc 2

O |0 |N|[o|jg|bh|WIN|(=|OC

21 COMP 322, Spring 2013 (V.Sarkar)

Worksheet #10: Scheduling Program Q2 using a
Work-First & Help-First Schedulers (contd)

A 1. // Program Q2
‘g' 2. A;

B o C 3. finish {

4 async { C; E; }
5. async F;
D @ = @ |:6. async { B; D; }
7. }

Help-First Schedule

Start
time

Proc 1

Proc 2

O |0 |N|[o|jg|bh|WIN|(=|OC

22 COMP 322, Spring 2013 (V.Sarkar)

