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Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914
• Lecture on “Linearizability” by Mila Oren

—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt 
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Actor Life Cycle (Recap)

Actor states

l New: Actor has been created

l e.g., email account has been created
l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages 

l e.g., termination of email account after graduation
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Synchronous Reply using Async-Await
1. class SynchronousReplyActor1 extends Actor {

2. void process(Message msg) {

3.    if (msg instanceof Ping) {

4.       finish {

5.          DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

6.          otherActor.send(ddf);

7.          async await(ddf) {

8.             T synchronousReply = ddf.get();

9.             // do some processing with synchronous reply

10.         }

11.      } 

12.   } else if (msg instanceof ...) { ... } } }
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Actors: pause and resume (Recap)

l PAUSED state: actor will not process subsequent messages until 
it is resumed

l Pausing an actor does not block current process() call
l Pause an actor before returning from message processing body 

with escaping asyncs
l Resume actor when it is safe to process subsequent messages

l Messages can accumulate in mailbox when actor is in PAUSED 
state (analogous to NEW state)
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Actors: pause and resume (contd)
l pause() operation:

l Is a non-blocking operation, i.e. allows the next statement to 
be executed.

l Calling pause() when the actor is already paused is a no-op.
l Once paused, the state of the actor changes and it will no 

longer process messages sent (i.e. call process(message)) to it 
until it is resumed.

l resume() operation:
l Is a non-blocking operation.
l Calling resume() when the actor is not paused is an error, the 

HJ runtime will throw a runtime exception.
l Moves the actor back to the STARTED state

l the actor runtime spawns a new asynchronous thread to 
start processing messages from its mailbox.
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Synchronous Reply using Pause/Resume
1. class SynchronousReplyActor2 extends Actor {

2.   void process(Message msg) {

3.     if (msg instanceof Ping) {

4.       DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

5.       otherActor.send(ddf);

6.       pause(); // the actor doesn't process subsequent messages   

7.       async await(ddf) { // this async processes synchronous reply 

8.          T synchronousReply = ddf.get();

9.          // do some processing with synchronous reply

10.          resume(); // allow actor to process next message in mailbox

11.       }

12.     } else if (msg instanceof ...) { ... } } }
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Worksheet #22: 
Linearizability of method calls on a concurrent object
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Is this a linearizable execution for a FIFO queue, q?

No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() operation to 
return y.
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Linearizability of Concurrent Objects 
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods 
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points 
that are consistent with a sequential execution in which methods 
are executed at those points

• An object is linearizable if all its possible executions are 
linearizable
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1.  // Assume that no. of enq() operations is < Integer.MAX_VALUE
2.  class Queue1 {
3.    AtomicInteger head = new AtomicInteger(0);
4.    AtomicInteger tail = new AtomicInteger(0); 
5.    Object[] items = new Object[Integer.MAX_VALUE]; 
6.    public void enq(Object x) {
7.      int slot = tail.getAndIncrement(); // isolated(tail) ...
8.     items[slot] = x;
9.   } // enq
10.   public Object deq() throws EmptyException {
11.     int slot = head.getAndIncrement(); // isolated(head) ...
12.     Object value = items[slot];
13.     if (value == null) throw new EmptyException();
14.     return value;
15.   } // deq
16. } // Queue1

17. // Client code
18. finish {
19.   Queue1 q = new Queue1();
20.   async q.enq(new Integer(1));
21.   q.enq(newInteger(2));
22.   Integer x = (Integer) q.deq();
23. }

One Possible Attempt to Implement
a Concurrent Queue

Worksheet #23: Is there a possible 
execution for which deq() results in an 
EmptyException? If so, that is a non-

linearizable execution.
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Example 4: execution of a monitor-based 
implementation of FIFO queue q (Recap)

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Computation Graph for previous execution
(Example 4)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A
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Monitor-based execution encloses each method call in an 
isolated statement, demarcated by isolated-begin (i-begin) 
and isolated-end (i-end) nodes
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Creating a Reduced Computation Graph to model 
Instantaneous Execution of Methods in a Concurrent Object

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph
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Basic idea: replace method of 
concurrent object by a single 
node in reduced CG 
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Relating Linearizability to the 
Computation Graph model

• Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic as in the 
previous example. 

• This means that if the reduced CG is acyclic, then the 
underlying execution must be linearizable. 

• However, the converse is not necessarily true, as we 
will see.
—We cannot use a cycle in the reduced CG as 

evidence of non-linearizability

14



COMP 322, Spring 2013 (V. Sarkar)

Example 5: Example execution of method 
calls on a concurrent FIFO queue q (Recap)
Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Computation Graph for previous execution
(Example 5)

i-begin isolated
work

i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph
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non-
isolated
work

isolated
work

q.enq(x)
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Reduced Computation Graph for previous execution
(Example 5)

• Example of linearizable execution graph for which reduced 
method-level graph is cyclic

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of “try” 
steps followed by a “commit” step

• “try” steps are usually implemented as a loop (this notion of 
“try” is unrelated to Java’s try-catch statements)

• Assume that each “commit” step’s execution does not use any 
input from any prior “try” step

è Reduced graph can just reduce the “commit” step to a single 
node instead of reducing the entire method to a single node 
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Computation Graph for Example 5 
decomposed into try & commit portions

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(y)

Method
q.enq(x)
commit

Method
q.deq():x

Method-level Reduced Graph
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i-begin isolated
work (try)

i-end

non-
isolated

work (try)

isolated
work

(commit)

q.enq(x)

Task A

Task ATask B Task B
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Motivation for try-commit pattern
• “Nonblocking” synchronization
— Pro: Resilient to failure or delay of any thread attempting synchronization
— Con: “spin loop” may tie up a worker indefinitely

• Try-in-a-loop pattern for optimistic synchronization 

LOOP {
1) Set-up (local operation invisible to other threads)
2) Instantaneous effect e.g., CompareAndSet
    a) If successful break out of loop
    b) If unsuccessful continue loop

 }

3) (OPTIONAL) Clean-up if needed (can be done by any task)
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Example of non-blocking synchronization: implementing 
AtomicInteger.getAndAdd() using compareAndSet()

  /** Atomically adds delta to the current value.
1.     *
2.     * @param delta the value to add
3.     * @return the previous value
4.     */
5.    public final int getAndAdd(int delta) {
6.        for (;;) { // try
7.            int current = get();
8.            int next = current + delta;
9.            if (compareAndSet(current, next))
10.                // commit
11.                return current;
12.        }
13.    }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java
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Worksheet #23: 
Linearizability of method calls on a concurrent object

21

Name 1: ___________________          Name 2: ___________________

Can you show an execution for which deq() results in an EmptyException 
in line 22 below? If so, that is a non-linearizable execution.
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One Possible Attempt to Implement
a Concurrent Queue

1.  // Assume that no. of enq() operations is < Integer.MAX_VALUE
2.  class Queue1 {
3.    AtomicInteger head = new AtomicInteger(0);
4.    AtomicInteger tail = new AtomicInteger(0); 
5.    Object[] items = new Object[Integer.MAX_VALUE]; 
6.    public void enq(Object x) {
7.      int slot = tail.getAndIncrement(); // isolated(tail) ...
8.     items[slot] = x;
9.   } // enq
10.   public Object deq() throws EmptyException {
11.     int slot = head.getAndIncrement(); // isolated(head) ...
12.     Object value = items[slot];
13.     if (value == null) throw new EmptyException();
14.     return value;
15.   } // deq
16. } // Queue1

17. // Client code
18. finish {
19.   Queue1 q = new Queue1();
20.   async q.enq(new Integer(1));
21.   q.enq(newInteger(2));
22.   Integer x = (Integer) q.deq();
23. }
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