
COMP 322: Fundamentals of
Parallel Programming

Lecture 23:
Linearizability of Concurrent Objects (contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 23 13 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914
• Lecture on “Linearizability” by Mila Oren

—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

2

COMP 322, Spring 2013 (V. Sarkar)3

Actor Life Cycle (Recap)

Actor states

l New: Actor has been created

l e.g., email account has been created
l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages

l e.g., termination of email account after graduation

COMP 322, Spring 2013 (V. Sarkar)4

Synchronous Reply using Async-Await
1. class SynchronousReplyActor1 extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. finish {

5. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

6. otherActor.send(ddf);

7. async await(ddf) {

8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. }

11. }

12. } else if (msg instanceof ...) { ... } } }

COMP 322, Spring 2013 (V. Sarkar)5

Actors: pause and resume (Recap)

l PAUSED state: actor will not process subsequent messages until
it is resumed

l Pausing an actor does not block current process() call
l Pause an actor before returning from message processing body

with escaping asyncs
l Resume actor when it is safe to process subsequent messages

l Messages can accumulate in mailbox when actor is in PAUSED
state (analogous to NEW state)

COMP 322, Spring 2013 (V. Sarkar)6 COMP 322, Spring 2013 (V. Sarkar)

Actors: pause and resume (contd)
l pause() operation:

l Is a non-blocking operation, i.e. allows the next statement to
be executed.

l Calling pause() when the actor is already paused is a no-op.
l Once paused, the state of the actor changes and it will no

longer process messages sent (i.e. call process(message)) to it
until it is resumed.

l resume() operation:
l Is a non-blocking operation.
l Calling resume() when the actor is not paused is an error, the

HJ runtime will throw a runtime exception.
l Moves the actor back to the STARTED state

l the actor runtime spawns a new asynchronous thread to
start processing messages from its mailbox.

COMP 322, Spring 2013 (V. Sarkar)7

Synchronous Reply using Pause/Resume
1. class SynchronousReplyActor2 extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

5. otherActor.send(ddf);

6. pause(); // the actor doesn't process subsequent messages

7. async await(ddf) { // this async processes synchronous reply

8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. resume(); // allow actor to process next message in mailbox

11. }

12. } else if (msg instanceof ...) { ... } } }

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #22:
Linearizability of method calls on a concurrent object

8

Is this a linearizable execution for a FIFO queue, q?

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

COMP 322, Spring 2013 (V. Sarkar)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

• An object is linearizable if all its possible executions are
linearizable

9

COMP 322, Spring 2013 (V. Sarkar)

1. // Assume that no. of enq() operations is < Integer.MAX_VALUE
2. class Queue1 {
3. AtomicInteger head = new AtomicInteger(0);
4. AtomicInteger tail = new AtomicInteger(0);
5. Object[] items = new Object[Integer.MAX_VALUE];
6. public void enq(Object x) {
7. int slot = tail.getAndIncrement(); // isolated(tail) ...
8. items[slot] = x;
9. } // enq
10. public Object deq() throws EmptyException {
11. int slot = head.getAndIncrement(); // isolated(head) ...
12. Object value = items[slot];
13. if (value == null) throw new EmptyException();
14. return value;
15. } // deq
16. } // Queue1

17. // Client code
18. finish {
19. Queue1 q = new Queue1();
20. async q.enq(new Integer(1));
21. q.enq(newInteger(2));
22. Integer x = (Integer) q.deq();
23. }

One Possible Attempt to Implement
a Concurrent Queue

Worksheet #23: Is there a possible
execution for which deq() results in an
EmptyException? If so, that is a non-

linearizable execution.

10

COMP 322, Spring 2013 (V. Sarkar)

Example 4: execution of a monitor-based
implementation of FIFO queue q (Recap)

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

11

COMP 322, Spring 2013 (V. Sarkar)

Computation Graph for previous execution
(Example 4)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A

12

Monitor-based execution encloses each method call in an
isolated statement, demarcated by isolated-begin (i-begin)
and isolated-end (i-end) nodes

COMP 322, Spring 2013 (V. Sarkar)

Creating a Reduced Computation Graph to model
Instantaneous Execution of Methods in a Concurrent Object

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

13

Basic idea: replace method of
concurrent object by a single
node in reduced CG

COMP 322, Spring 2013 (V. Sarkar)

Relating Linearizability to the
Computation Graph model

• Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic as in the
previous example.

• This means that if the reduced CG is acyclic, then the
underlying execution must be linearizable.

• However, the converse is not necessarily true, as we
will see.
—We cannot use a cycle in the reduced CG as

evidence of non-linearizability

14

COMP 322, Spring 2013 (V. Sarkar)

Example 5: Example execution of method
calls on a concurrent FIFO queue q (Recap)
Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

15

COMP 322, Spring 2013 (V. Sarkar)

Computation Graph for previous execution
(Example 5)

i-begin isolated
work

i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

16

non-
isolated
work

isolated
work

q.enq(x)

COMP 322, Spring 2013 (V. Sarkar)

Reduced Computation Graph for previous execution
(Example 5)

• Example of linearizable execution graph for which reduced
method-level graph is cyclic

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of “try”
steps followed by a “commit” step

• “try” steps are usually implemented as a loop (this notion of
“try” is unrelated to Java’s try-catch statements)

• Assume that each “commit” step’s execution does not use any
input from any prior “try” step

è Reduced graph can just reduce the “commit” step to a single
node instead of reducing the entire method to a single node

17

COMP 322, Spring 2013 (V. Sarkar)

Computation Graph for Example 5
decomposed into try & commit portions

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(y)

Method
q.enq(x)
commit

Method
q.deq():x

Method-level Reduced Graph

18

i-begin isolated
work (try)

i-end

non-
isolated

work (try)

isolated
work

(commit)

q.enq(x)

Task A

Task ATask B Task B

COMP 322, Spring 2013 (V. Sarkar)19

Motivation for try-commit pattern
• “Nonblocking” synchronization
— Pro: Resilient to failure or delay of any thread attempting synchronization
— Con: “spin loop” may tie up a worker indefinitely

• Try-in-a-loop pattern for optimistic synchronization

LOOP {
1) Set-up (local operation invisible to other threads)
2) Instantaneous effect e.g., CompareAndSet
 a) If successful break out of loop
 b) If unsuccessful continue loop

 }

3) (OPTIONAL) Clean-up if needed (can be done by any task)

COMP 322, Spring 2013 (V. Sarkar)

Example of non-blocking synchronization: implementing
AtomicInteger.getAndAdd() using compareAndSet()

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) { // try
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

20

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #23:
Linearizability of method calls on a concurrent object

21

Name 1: ___________________ Name 2: ___________________

Can you show an execution for which deq() results in an EmptyException
in line 22 below? If so, that is a non-linearizable execution.

COMP 322, Spring 2013 (V. Sarkar)

One Possible Attempt to Implement
a Concurrent Queue

1. // Assume that no. of enq() operations is < Integer.MAX_VALUE
2. class Queue1 {
3. AtomicInteger head = new AtomicInteger(0);
4. AtomicInteger tail = new AtomicInteger(0);
5. Object[] items = new Object[Integer.MAX_VALUE];
6. public void enq(Object x) {
7. int slot = tail.getAndIncrement(); // isolated(tail) ...
8. items[slot] = x;
9. } // enq
10. public Object deq() throws EmptyException {
11. int slot = head.getAndIncrement(); // isolated(head) ...
12. Object value = items[slot];
13. if (value == null) throw new EmptyException();
14. return value;
15. } // deq
16. } // Queue1

17. // Client code
18. finish {
19. Queue1 q = new Queue1();
20. async q.enq(new Integer(1));
21. q.enq(newInteger(2));
22. Integer x = (Integer) q.deq();
23. }

22

