COMP 322: Fundamentals of
Parallel Programming

Lecture 23:
Linearizability of Concurrent Objects (contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 23 13 March 2013

Acknowledgments for Today’s Lecture

e Maurice Herlihy and Nir Shavit. The art of multiprocessor
programming. Morgan Kaufmann, 2008.

—Optional text for COMP 322

—Chapter 3 slides extracted from http://www.elsevierdirect.com/
companion.jsp?ISBN=9780123705914

* Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

2 COMP 322, Spring 2013 (V. Sarkar))

Actor Life Cycle (Recap)

O—>| NEW [—>| STARTED —»| TERMINATED —>()

Actor states

* New: Actor has been created

* e.g., email account has been created

« Started: Actor can receive and process messages

* e.g., email account has been activated

« Terminated: Actor will no longer processes messages

e e.d., termination of email account after graduation

3 COMP 322, Spring 2013 (V. Sarkar) %§

Synchronous Reply using Async-Await

1. class SynchronousReplyActorl extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. finish {

5. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();
6. otherActor.send(ddf);

7. async await(ddf) {

8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. }

11. }

12. } else if (msg instanceof ...) { ... } } }

4 COMP 322, Spring 2013 (V. Sarkar) %ﬁ

Actors: pause and resume (Recap)

start STARTED exit
pause resume TERMINATED

exit

new

 PAUSED state: actor will not process subsequent messages until
it is resumed

« Pausing an actor does not block current process() call

 Pause an actor before returning from message processing body
with escaping asyncs

« Resume actor when it is safe to process subsequent messages

« Messages can accumulate in mailbox when actor is in PAUSED
state (analogous to NEW state)

5 COMP 322, Spring 2013 (V. Sarkar) /@\

Actors: pause and resume (contd)

« pause() operation:

* Is a non-blocking operation, i.e. allows the next statement to
be executed.

« Calling pause() when the actor is already paused is a no-op.

 Once paused, the state of the actor changes and it will no

longer process messages sent (i.e. call process(message)) to it
until it is resumed.

* resume() operation:
« Is a non-blocking operation.

« Calling resume() when the actor is not paused is an error, the
HJ runtime will throw a runtime exception.

« Moves the actor back to the STARTED state

« the actor runtime spawns a new asynchronous thread to
start processing messages from its mailbox.

6 NP2, S 25 (. Shan) A

Synchronous Reply using Pause/Resume

1. class SynchronousReplyActor2 extends Actor {

2. void process (Message msg) {

3. if (msg instanceof Ping) {

4. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

5. otherActor.send(ddf);

6. pause(); // the actor doesn't process subsequent messages

7. async await(ddf) { // this async processes synchronous reply
8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. resume(); // allow actor to process next message in mailbox
11. }

12. } else if (msg instanceof ...) { ... } } }

7 COMP 322, Spring 2013 (V. Sarkar))

Worksheet #22:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

Time || Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

No! q.enq(x) must precede g.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the g.deq() operation to
returny.

TG
8 COMP 322, Spring 2013 (V. Sarkar) %\‘

Linearizability of Concurrent Objects
(Summary)

Concurrent object

e A concurrent object is an object that can correctly handle methods
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, Atomicinteger

Linearizability

e Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

e An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

e An object is linearizable if all its possible executions are
linearizable

9 COMP 322, Spring 2013 (V. Sarkar) %\

0O O Ul b WDN K=

el el
B W N R o

15.
l6.

17.
18.
19.
20.
21.
22.
23.

10

// Assume that no. of eng() operations is < Integer.MAX VALUE
class Queuel {

AtomicInteger head = new AtomicInteger(0);

AtomicInteger tail = new AtomicInteger(0);

Object[] items = new Object[Integer.MAX VALUE];

public void enq(Object x) {

items[slot] = x;
} // eng
public Object deq() throws EmptyException {

} // deq
} // Queuel
// Client code Worksheet #23: Is there a possiblh
finish { execution for which deq() results in an

Queuel g = new Queuel();
async g.enq(new Integer(l));

q.enq(newInteger(2)); linearizable execution. /
Integer x = (Integer) g.deq();

One Possible Attempt to Implement
a Concurrent Queue

int slot = tail.getAndIncrement(); // isolated(tail)

int slot = head.getAndIncrement(); // isolated(head)
Object value = items[slot];

if (value == null) throw new EmptyException();
return value;

EmptyException? If so, that is a non-

COMP 322, Spring 2013 (V. Sarkar))

Example 4: execution of a monitor-based

implementation of FIFO queue g (Recap)

Is this a linearizable execution?

Time || Task A Task B
Invoke q.enq(x)
Work on g.enq(x)
Work on q.enq(x)
Return from q.enq(x)

Invoke q.enq(y)

Work on q.enq(y)
Work on q.enq(y)
Return from q.enq(y)
Invoke q.deq()

Return x from q.deq()

© 00O Ut W N —=O

Yes! Equivalent to “"q.enq(x) : q.enq(y) . q.deq():x"

11 COMP 322, Spring 2013 (V. Sarkar) %

Computation Graph for previous execution
(Example 4)

i-begin| /> q.enq(x)|— > i-end —> Continue edge

-—--> Serialization edge

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

i-be;in ——%q.enq(y) — > i-end|™> i-begin|™ q.deq():x|™> i-end

Monitor-based execution encloses each method call in an
isolated statement, demarcated by isolated-begin (i-begin)
and isolated-end (i-end) nodes

12 COMP 322, Spring 2013 (V. Sarkar) G

Creating a Reduced Computation Graph to model
Instantaneous Execution of Methods in a Concurrent Object

Method q.enq(x) ComprCﬂ'ion _Gr'aLh

i-begin

node in reduced CG

i-begin

Basic idea: replace method of
concurrent object by a single

Method q.enq(y)

Method-level Reduced Graph

|i-begin[q.deq():x| > i-end

\

l Method q.deq():x

13 COMP 322, Spring 2013 (V. Sarkar)

Relating Linearizability to the
Computation Graph model

e Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic as in the
previous example.

e This means that if the reduced CG is acyclic, then the
underlying execution must be linearizable.

* However, the converse is not necessarily true, as we
will see.

—We cannot use a cycle in the reduced CG as
evidence of non-linearizability

14 COMP 322, Spring 2013 (V. Sarkar) p}ag

Example 5: Example execution of method

calls on a concurrent FIFO queue q (Recap)

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x) Invoke q.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

15

COMP 322, Spring 2013 (V. Sarkar)

A

Computation Graph for previous execution
(Example 5)

Computation Graph

Task A

/ 9-enqlx) non-
i . isolated
\Li-begin|—™> isolated i-end|—> isolated — i-begin|™> ok i-en)
— work = work _ =
; - 4;’ - - -~

-
” - ’f’
- - -
l’ P -

i-be;in —+q.enq(y) — ?|i-end i—be;in —>| q.deq():x —}

—> Continue edge - --> Serialization edge

Method-level Reduced Graph

Task B

_——
—_—
~

-
f—

Method

Method
q.enq(y)

Method
q.enq(x)

16 COMP 322, Spring 2013 (V. Sarkar) %

Reduced Computation Graph for previous execution
(Example 5)

e Example of linearizable execution graph for which reduced
method-level graph is cyclic

——____--~~
- —~

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

e Approach to make cycle test more precise for linearizability

e Decompose concurrent object method into a sequence of “try”
steps followed by a “commit” step

e “try” steps are usually implemented as a loop (this notion of
“try” is unrelated to Java’s try-catch statements)

e Assume that each “commit” step’s execution does not use any
input from any prior “try” step

= Reduced graph can just reduce the “commit” step to a single
node instead of reducing the entire method to a single node

17 COMP 322, Spring 2013 (V. Sarkar) %‘]

Computation Graph for Example 5
decomposed into try & commit portions

Computation Graph

Task A
q.enq(x)
isolated o / isolated \
i-begin |~ ——>{j-end |- isolated o pogin|—>| work |—|i-end
work (try) o work (try) | _ (commit)| _ - =
- T~ é,f"/ \
i-begin —+q.enq(y) — ?|i-end i-begin| ™ q.deq():x|—>| i-end
Task B —> Continue edge - --> Serialization edge

Method-level Reduced Graph

P]

. BN Task B

Method
q.enq(y)

Task A\ Task B

Method

Task A

_ly isolated | i—end|— isolated -
work (try) work (try)

Method

~>\ q.enq(x)
commit

>

i-begin

18 COMP 322, Spring 2013 (V. Sarkar)

Motivation for try-commit pattern

e “Nonblocking” synchronization
— Pro: Resilient to failure or delay of any thread attempting synchronization
— Con: “spin loop” may tie up a worker indefinitely

e Try-in-a-loop pattern for optimistic synchronization

LOOP {
1) Set-up (local operation invisible to other threads)
2) Instantaneous effect e.g., CompareAndSet
a) If successful break out of loop
b) If unsuccessful continue loop

}
3) (OPTIONAL) Clean-up if needed (can be done by any task)

19 COMP 322, Spring 2013 (V. Sarkar) &,

Example of non-blocking synchronization: implementing
Atomicinteger.getAndAdd() using compareAndSet()

/** Atomically adds delta to the current value.

1. *

2. * @param delta the value to add

3. * @return the previous value

4. */

5. public final int getAndAdd(int delta) {
6. for (;;) { // try

7. int current = get();

8. int next = current + delta;

9. if (compareAndSet(current, next))
10. // commit

11. return current;

12. }

13. }

* Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgil/jsr166/src/main/javalutil/concurrent/
atomic/Atomiclnteger.java

20 COMP 322, Spring 2013 (V. Sarkar) D

Worksheet #23:
Linearizability of method calls on a concurrent object

Name 1: Name 2:

Can you show an execution for which deq() results in an EmptyException
in line 22 below? If so, that is a non-linearizable execution.

21 COMP 322, Spring 2013 (V. Sarkar) %

One Possible Attempt to Implement
a Concurrent Queue

1. // Assume that no. of eng() operations is < Integer.MAX VALUE
2. class Queuel {

3. AtomicInteger head = new AtomicInteger(0);

4. AtomicInteger tail = new AtomicInteger(0);

5. Object[] items = new Object[Integer.MAX VALUE];

6. public void enq(Object x) {

7. int slot = tail.getAndIncrement(); // isolated(tail) ...
8. items[slot] = x;

9. } // eng

10. public Object deq() throws EmptyException {

11. int slot = head.getAndIncrement(); // isolated(head) ...
12. Object value = items[slot];

13. if (value == null) throw new EmptyException();

14. return value;

15. } // deq
16. } // Queuel

17. // Client code
18. finish {

19. Queuel g = new Queuel();

20. async g.enq(new Integer(1l));
21. g.enq(newlnteger(2));

22. Integer x = (Integer) qgq.deq();
23. }

22 COMP 322, Spring 2013 (V. Sarkar) %

