COMP 322 Spring 2015

Homework 1: due by 5pm on Wednesday, January 28, 2015
(Total: 100 points)

Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw_1 in your svn repository for
this course. In case of problems using the script, you should email a zip file containing the
directory to comp322-staff@mailman.rice.edu before the deadline. A 10% penalty per day will
be levied on late homeworks, up to a maximum of 6 days. No submissions will be accepted
more than 6 days after the due date.

If you believe there is any ambiguity or inconsistency in a question, please seek a clarification
on Piazza or from the teaching staff. If it is not resolved through those channels, you should
state the ambiguity or inconsistency that you see, as well as any assumptions that you make
to resolve it.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone else’s work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Submit your solutions to the written assignments in either a plain text file named hw_1_written.tzt or a
PDF file named hw_1_written.pdf in the hw_1 directory.

1.1 Finish Synchronization (20 points)

Consider the sequential and incorrect parallel versions of the HJ code fragment included below. Your task
is to only insert finish statements in the incorrect parallel version so as to ensure that the parallel version
computes the same result as the sequential version, while mazimizing the potential parallelism.

// SEQUENTIAL VERSION:
for (p = first; p != null; p = p.next) p.x = p.y + p.z;
for (p = first; p !'= null; p .next) sum += p.x;

I
el

// INCORRECT PARALLEL VERSION:
for (p = first; p != null; p =
for (p = first; p != null; p =

.next) async p.x = p.y + p.zZ;
.next) sum += p.x;

|
hellse]

1.2 Amdahl’s Law (30 points)
In Lecture 4 (Topic 1.5), you will learn the following statement of Amdahls Law:

If q < 1 is the fraction of WORK in a parallel program that must be executed sequentially, then
the best speedup that can be obtained for that program, even with an unbounded number of
processors, is Speedup < 1/q.

Now, consider the following generalization of Amdahls Law. Let ¢l be the fraction of WORK in a parallel
program that must be executed sequentially, ¢2 be the fraction of WORK that can use at most 2 processors,
and (1 — g1 — ¢2) the fraction of WORK that can use an unbounded number of processors. Assume that the
fractions of WORK represented by g1, ¢2, and (1 — g1 — ¢2) are disjoint. Your assignment is to provide an
upper bound on the Speedup as a function of q1 and g2, and justify why it is a correct upper bound. (Hint:
to check your answer, consider the cases when q1=0 or q2=0.)

1of 2

comp322-staff@mailman.rice.edu

Homework 1: due by 5pm on Wednesday, January 28, 2015
COMP 322 (Total: 100 points)
Spring 2015

2 Programming Assignment (50 points)

2.1 Habanero-Java Library (HJ-lib) Setup

See Lab 1 for instructions on HJ-lib installation for use in this homework, and Lecture 3 and Section 1.3 of
the Module 1 handout for information on abstract execution metrics.

2.2 Parallel Sort (50 points)

In this homework, we have provided you with sequential implementations of different sorting algorithms.
One of them is Quicksort, discussed in Section 1.6 in the Module 1 handout, as well as the lecture and
demonstration videos for topic 1.6. However, there are others as well (e.g. Bitonic Sort, Merge Sort,
etc). Each of these sorting algorithms have been implemented in a file of their own, e.g. QuickSort.java,
BitonicSort.java, MergeSort.java, etc. As in lab_1, the homework project will be available in your svn
repository at https://svn.rice.edu/r/comp322/turnin/S15/your-netid/hw_1.

Your assignment is to write a correct parallel version of any sort algorithm that you choose by overriding
the parSort () method. The goal is to obtain the smallest possible CPL wvalue that you can for the given
input, as measured using abstract erecution metrics. A secondary goal is to not increase the WORK wvalue
significantly when doing so, but some increase is fine. Your edits should be restricted to the file for that given
sort algorithm and the sortInstance() method in Homeworkl.java. A correct parallel program should
generate the same output as the sequential version, and should not exhibit any data races. The parallelism
in your solution should be expressed using only async, finish, and/or future constructs. It should pass
the unit tests provided, and other tests that the teaching staff will use while grading.

For the abstract metrics in this assignment, we only count 1 unit of work for each call to compareTo(), and
ignore the cost of everything else. While this seems idealistic, it is a reasonable assumption when sorting is
performed on objects with large keys.

Your submission should include the following in the hw_1 directory:

1. (25 points) A complete parallel solution for a sorting algorithm of your choice in a modified Java file.
For example, if you chose to parallelize Merge Sort, you need to submit MergeSort. java to the svn
repository. In addition, you will need to edit the sortInstance () method in Homeworkl.java to return
an instance of MergeSort. We will only evaluate its performance using abstract metrics, and not its
actual execution time.

15 points will be allocated based on the ideal parallelism that you achieve. You will get the full 15
points if you achieve a CPL of (logan)? for an array of n elements, or better, without increasing WORK
to more than 2x the WORK of the sequential version.

10 points will be allocated for coding style and documentation. Please feel free to state which coding
convention you use. If you do not have a preference, we recommend the Google Java Style defined
at https://google-styleguide.googlecode.com/svn/trunk/javaguide.html. At a minimum, all
code should include basic documentation for each method in each class.

2. (15 points) A report file formatted either as a plain text file named hw_1_report.txt or a PDF file
named hw_1_report.pdf in the hw_1 directory. The report should contain the following:

(a) A summary of your parallel algorithm. You should write a few sentences describing the approach
and the algorithm.
(b) An explanation as to why you believe that your implementation is correct and data-race-free

(¢) An explanation of what values of WORK and CPL (as formulae of n) you expect to see from your
algorithm.

3. (10 points) The report file should also include test output for sorting an array of size n = 1024 (i.e.
the unit test name testRandomDataInputiK). The test output should include the WORK, CPL, and
IDEAL PARALLELISM (= WORK/CPL) values from each run.

2 of 2

http://www.cs.rice.edu/~vs3/hjlib/code/course-materials/lab01/comp322-s14-lab1.pdf
https://edge.edx.org/c4x/RiceX/COMP322/asset/module1-2014-01-12.pdf
https://edge.edx.org/c4x/RiceX/COMP322/asset/module1-2014-01-12.pdf
https://google-styleguide.googlecode.com/svn/trunk/javaguide.html

	Written Assignments (50 points total)
	Finish Synchronization (20 points)
	Amdahl's Law (30 points)

	Programming Assignment (50 points)
	Habanero-Java Library (HJ-lib) Setup
	Parallel Sort (50 points)

