
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 39: Review of Modules 2 & 3

(Lectures 20-37)

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 39 24 April 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HJ isolated construct (Lecture 20)
isolated (() -> <body>);

• Isolated construct identifies a critical section

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated,

non-isolated) pairs of constructs

• Isolated constructs may be nested
— An inner isolated construct is redundant

• Blocking parallel constructs are forbidden inside isolated constructs
—Isolated constructs must not contain any parallel construct that performs a blocking

operation e.g., finish, future get, next
—Non-blocking async operations are permitted, but isolation guarantee only applies to

creation of async, not to its execution

• Isolated constructs can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks) can lead to a deadlock,

if used incorrectly

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Object-based isolation
isolated(obj1, obj2, …, () -> <body>)!

• In this case, programmer specifies list of objects for which
isolation is required

• Mutual exclusion is only guaranteed for instances of isolated
constructs that have a common object in their object lists
—Serialization edges are only added between isolated steps with

at least one common object (non-empty intersection of objstec
lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e.,
isolation across all objects

• Inner isolated constructs are redundant — they are not allowed to
“add” new objects

3

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
object-based isolated construct (Lab 9)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean tryLabeling(final V n) {
5. return isolatedWithReturn(this, () -> {!
6. if (parent == null) parent = n;!
7. return parent == n; // return true if n became parent!
8. });!
9. } // tryLabeling
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.tryLabeling(this))
14. async(() -> { child.compute(); }); // escaping async
15. }
16. } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. . . .

4

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

 Data race definition can be applied to Serialized Computation Graphs
(SCGs) just like regular CGs

5

	

— Need to consider all possible orderings of interfering isolated

constructs to establish data race freedom

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #20 solution:
Insertion of isolated for correctness

1.class IsolatedPRNG {!
2. private int seed; !
3. public int nextSeed() {!
4. return isolatedWithReturn(this, ()->{ !
5. int retVal = seed;!
6. seed = nextInt(retVal);!
7. return retVal;!
8. });!
9.} // nextSeed()!
10. . . . !
11.} // IsolatedPRNG

6

The goal of IsolatedPRNG is to implement a single Pseudo Random
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method
nextSeed() to avoid data races and guarantee proper semantics.

12.main() { // Pseudocode!
13. // Initial seed = 1!
14. IsolatedPRNG r = new IsolatedPRNG(1); !
15. async(() -> { print r.nextSeed(); ... });!
16. async(() -> { print r.nextSeed(); ... });!
17.} // main()

Note that enclosing line 5 and line 6 in separate isolated constructs will
avoid data races, but it will not guarantee the semantics of a sequential
Pseudo Random Number Generator for a given PRNG object.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Eureka construct (Lecture 21)

7

1.eureka = eurekaFactory()	
2.finish (eureka) S1	

• Multiple	
 finish’es	
 can	
 register	
 on	
 same	
 Eureka	

• Wait	
 for	
 all	
 tasks	
 to	
 finish	
 as	
 before	

• Except	
 that	
 some	
 tasks	
 may	
 terminate	
 early	
 when	
 eureka	
 is	

resolved	

3.async	
 	

• Inherits	
 eureka	
 registrations	
 from	
 immediately-­‐enclosing	
 finish	

4.offer()	
• Triggers	
 eureka	
 event	
 on	
 registered	
 eureka	

5.check()	
• Causes	
 task	
 to	
 terminate	
 if	
 eureka	
 resolved

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Eureka Variants

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

java.util.concurrent.atomic.AtomicReference!
(Lecture 22)

• Constructors
—new AtomicReference()!

– Creates a new AtomicReference with initial value 0!
—new AtomicReference(Object init)	

– Creates a new AtomicReference with the given initial value

• Selected methods
—int getAndSet(Object newRef) !

– Atomically get current value of the atomic variable, and set value to
newRef

—int compareAndSet(Object expect, Object update)	

– Atomically check if current value = expect. If so, replace the value

of the atomic variable by update and return true. Otherwise, return
false.

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

• Body Level One
— Body Level Two

– Body Level Three
Body Level Four

Body Level Five

10

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.
!
AtomicReference<T> can be used to specify a type parameter.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Parallel Spanning Tree Algorithm using
AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean tryLabeling(final V n) {
5. return parent.compareAndSet(null, n);
6. ;!
7. } // tryLabeling
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.tryLabeling(this))
12. async(() -> { child.compute(); }); // escaping async
13. }
14. } // compute
15. } // class V
16. . . .
17. root.parent = root; // Use self-cycle to identify root
18. finish(() -> { root.compute(); });
19. . . .

11

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #22 solution:
Abstract Metrics with Isolated Constructs

1. finish(() -> {!
2. for (int i = 0; i < 5; i++) {!
3. async(() -> {!
4. doWork(2);!
5. isolated(() -> { doWork(1); });!
6. doWork(2);!
7. }); // async!
8. } // for!
9. }); // finish

12

Q: Compute the WORK and CPL metrics for this program. Indicate
if your answer depends on the execution order of isolated
constructs.

Answer: WORK = 25, CPL = 9. These metrics do not depend on
the execution order of isolated constructs.

!
!
!
!
Actor states
l New: Actor has been created

l e.g., email account has been
created, messages can be
received

l Started: Actor can process
messages
l e.g., email account has been

activated
l Terminated: Actor will no longer

processes messages
l e.g., termination of email

account after graduation
COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The Actor Model (Lectures 23-25)

13

1. finish(() -> {!
2. int numThreads = 4;!
3. int numberOfHops = 10;!
4. ThreadRingActor[] ring =  

 new ThreadRingActor[numThreads];!
5. for(int i=numThreads-1;i>=0; i--) {!
6. ring[i] = new ThreadRingActor(i);!
7. ring[i].start();!
8. if (i < numThreads - 1) {!
9. ring[i].nextActor(ring[i + 1]);!
10. } }!
11. ring[numThreads-1].nextActor(ring[0]);!
12. ring[0].send(numberOfHops);!
13.}); // finish  

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

ThreadRing (Coordination) Example

14

3 1

0

2

14.class ThreadRingActor !
15. extends Actor<Object> {!
16. private Actor<Object> nextActor;!
17. private final int id;!
18. ... !
19. public void nextActor( 

 Actor<Object> nextActor) {...}!
20. void process(Object theMsg) {!
21. if (theMsg instanceof Integer) {!
22. Integer n = (Integer) theMsg;!
23. if (n > 0) {!
24. println("Thread-" + id + !
25. " active, remaining = " + n);!
26. nextActor.send(n - 1);!
27. } else {!
28. println("Exiting Thread-"+ id);!
29. nextActor.send(-1);!
30. exit();!
31. }!
32. } else { !
33. /* ERROR - handle appropriately */ !
34.} } }

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #23 solution:
Interaction between finish and actors

15

What would happen if the end-finish operation from slide 14 was
moved from line 13 to line 11 as shown below?

1. finish(() -> {!
2. int numThreads = 4;!
3. int numberOfHops = 10;!
4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];!
5. for(int i=numThreads-1;i>=0; i--) {!
6. ring[i] = new ThreadRingActor(i);!
7. ring[i].start(); // like an async!
8. if (i < numThreads - 1) {!
9. ring[i].nextActor(ring[i + 1]);!
10. } }!
11. }); // finish!
12.ring[numThreads-1].nextActor(ring[0]);!
13.ring[0].send(numberOfHops);!

 

Deadlock: the end-finish
operation in line 11 waits
for all the actors started in
line 7 to terminate, but the
actors are waiting for the
message sequence
initiated in line 13 before
they call exit().

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

From Actors to Selectors!
(Actors with multiple mailboxes)

• The basic idea behind pause() and
resume() is to enable/disable
processing of messages in an
actor’s mailbox

• This idea can be extended to
selectors

—a selector is an actor with
multiple mailboxes numbered
0…n-1

—s.send(i,msg) sends msg to
mailbox i of selector s

—disable(i) disables mailbox i
(like “pausing” mailbox i)

—enable(i) enables mailbox i
(like “resuming” mailbox i)

—enableAll() enables all the
mailboxes

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Join Patterns !
in Streaming Applications

17

• Selectors	
 can	
 be	
 used	
 to	
 implement	
 an	
 adder	
 for	
 3	
 input	
 streams	
 using	

actors	
 (see	
 slide	
 16	
 in	
 Lecture	
 24)	

• Messages	
 from	
 two	
 or	
 more	
 data	
 streams	
 are	
 combined	
 together	
 into	
 a	
 single	

message	

• Joins	
 need	
 to	
 match	
 inputs	
 from	
 each	
 source	
 	

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #24:
Ideal Parallelism in Actor Pipeline

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Consider a three-stage pipeline of actors set up so that P0.nextStage = P1,
P1.nextStage = P2, and P2.nextStage = null. The process() method for each
actor is shown below. Assume that 100 non-null messages are sent to actor P0
after all three actors are started, followed by a null message. What will the total
WORK and CPL be for this execution? Recall that each actor has a sequential
thread.
!
Solution: WORK = 300, CPL = 102

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }
 

...

18

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Linearizability of Concurrent Objects
(Lecture 25)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: concurrent queue, AtomicInteger
!

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

19

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

20

Task T1

Task T2

linearizable(2)

(1)

(3)

(4)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 2: is this execution
linearizable?

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

21

Task T1

Task T2

not linearizable

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #25:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

22

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Two-way Parallel Array Sum
using Java Threads (Lecture 26)

23

1. // Start of main thread

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Objects and Locks in Java --- 
synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock  
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor
• Locking and unlocking are automatic

— Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

24

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— In this example, use an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

25

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #26: Java Threads
1) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using start() and join() operations.
!

1. // Start of thread t0 (main program)
2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields
3. // Compute sum1 (lower half) and sum2 (upper half) in parallel
4. final int len = X.length;
5. Thread t1 = new Thread(() -> {
6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});
7. t1.start();
8. Thread t2 = new Thread(() -> {
9. for(int i=len/2 ; i < len ; i++)

sum2+=X[i];});
10. t2.start();
11. int sum = sum1 + sum2; // data race between t0 & t1, and t0 & t2
12. t1.join(); t2.join();

26

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #26: Java Threads
(contd)

2) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using synchronized statements.
!

1. // Start of thread t0 (main program)
2. sum = 0; // static int field
3. Object a = new ... ;
4. Object b = new ... ;
5. Thread t1 = new Thread(() -> { synchronized(a) { sum++; } });
6. Thread t2 = new Thread(() -> { synchronized(b) { sum++; } });
1. t1.start();
7. t2.start(); // data race between t1 & t2
8. t1.join(); t2.join();

27

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Implementation of Java synchronized
statements/methods (Lecture 27)

• Every object has an associated lock
• “synchronized” is translated to matching monitorenter and monitorexit

bytecode instructions for the Java virtual machine
— monitorenter requests “ownership” of the object’s lock
— monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not gain ownership of the lock
(because another thread already owns it), it is placed in an unordered “entry
set” for the object’s lock

28

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

java.util.concurrent.locks.Lock interface!
(Lecture 28)

 interface Lock { 

 void lock(); 

 void lockInterruptibly() throws InterruptedException;  

 boolean tryLock(); // return false if lock is not obtained  

 boolean tryLock(long timeout, TimeUnit unit)  

 throws InterruptedException;  

 void unlock(); 

 Condition newCondition();

 // can associate multiple condition vars with lock  

}

!
• java.util.concurrent.locks.Lock interface is implemented by

java.util.concurrent.locks.ReentrantLock class

29

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {  
 Lock readLock();  
 Lock writeLock();

 }
• Even though the interface appears to just define a pair of locks, the

semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

30

class Hashtable<K,V> {!
 …!
 // coarse-grained, one lock for table!
 ReadWriteLock lk = new ReentrantReadWriteLock(); !
 V lookup(K key) {!
 int bucket = hasher(key);!
 lk.readLock().lock(); // only blocks writers!
 … read array[bucket] … !
 lk.readLock().unlock();!
 }!
 void insert(K key, V val) {!
 int bucket = hasher(key);!
 lk.writeLock().lock(); // blocks readers and writers!
! … write array[bucket] … !
 lk.writeLock().unlock();!
 }!
}!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example code

31

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #28 solution: use of tryLock()
Extend the transferFunds() method from Lecture 26 (shown below) to use j.u.c. locks
with tryLock() instead of synchronized, and to return a boolean value --- true if it
succeeds in obtaining both locks and performing the transfer, and false otherwise.
Assume that each Account object contains a reference to a dedicated ReentrantLock
object. Sketch your answer below using pseudocode. Can you create a deadlock with
multiple calls to transferFunds() in parallel? !
1. public boolean transferFunds(Account from, Account to,
2. int amount) {
3. // Assume that each Account object has a lock field of
4. // a type/class that implements java.util.concurrent.locks.Lock
5. // Assume that no exception can be thrown in this code
6. // Calls to this method can never lead to a deadlock
7. if (! from.lock.trylock()) return false;
8. if (! to.lock.trylock()) { from.lock.unlock(); return false; }
9. from.subtractFromBalance(amount); to.addToBalance(amount);
10. // NOTE: unlock() should be in try-catch-finally for robustness
11. from.lock.unlock(); to.lock.unlock();
12. return true;
13. }

32

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Safety vs. Liveness (Lecture 29)
• In a concurrent setting, we need to specify both the safety and the

liveness properties of an object
• Need a way to define

— Safety: when an implementation is functionally correct (does not
produce a wrong answer)

— Liveness: the conditions under which it guarantees progress
(completes execution successfully)

!
• Data race freedom is a desirable safety property for most parallel

programs

• Linearizability is a desirable safety property for most concurrent objects

• What about liveness properties?

33

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Liveness
• Liveness = a program’s ability to make progress in a timely

manner

• Is termination a requirement for liveness?

• But some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger)
1. Deadlock freedom
2. Livelock freedom
3. Starvation freedom
4.Bounded wait

34

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #29:
Liveness Guarantees

 /** Atomically adds delta to the current value.!
 *!
 * @param delta the value to add!
 * @return the previous value!
 */!
 public final int getAndAdd(int delta) {!
 for (;;) {!
 int current = get();!
 int next = current + delta;!
 if (compareAndSet(current, next))!
 // commit!
 return current;!
 }!
 }!
Assume that multiple tasks call getAndAdd() repeatedly in parallel. Can this
implementation of getAndAdd() lead to executions with a) deadlock, b) livelock,
c) starvation, or d) unbounded wait? Write and explain your answer below.

!
c) starvation and d) unbounded wait are both possible
NOTE: a parallel program execution that terminates exhibits none of a), b), or c).

35

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The Dining Philosophers Problem!
(Lecture 30)

Constraints
• Five philosophers either eat or think
• They must have two forks to eat

(chopsticks are a better motivation!)
• Can only use forks on either side of

their plate
• No talking permitted
Goals
• Progress guarantees

• Deadlock freedom
• Livelock freedom
• Starvation freedom
• Maximum concurrency (no one

should starve if there are available
forks for them)

36

0

1

2

0

3

11

4

0

1
2

3

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #30: Characterizing Solutions to
the Dining Philosophers Problem

For the five solutions studied in Lecture #29, indicate in the table below
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the

same time, even when resources are available i.e., not being used
!

NOTES:
• Deadlock implies Starvation and Non-Concurrency
• Livelock implies Starvation and Non-Concurrency

37

COMP 322, Spring 2015 (V.Sarkar, E.Allen)38

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Places (Lecture 31)
here() = place at which current task is executing
numPlaces() = total number of places (runtime constant)

Specified by value of p in runtime option:
HjSystemProperty.numPlaces.set(p);

place(i) = place corresponding to index i
<place-expr>.toString() returns a string of the form “place(id=0)”
<place-expr>.id() returns the id of the place as an int
asyncAt(P, () -> S)
• Creates new task to execute statement S at place P
• async(() -> S) is equivalent to asyncAt(here(), () -> S)!
• Main program task starts at place(0)
!
Note that here() in a child task refers to the place P at which the child task is executing, not the place

where the parent task is executing

39

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0!
asyncAt(place(0), () -> S1); !
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3); !
asyncAt(place(1), () -> S4);!
asyncAt(place(1), () -> S5);

asyncAt(place(2), () -> S6);!
asyncAt(place(2), () -> S7);!
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);!
asyncAt(place(3), () -> S10);

40

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #32 solution: Spark and Map-Reduce

41

val points = spark.textFile(…).map(parsePoint).cache()
!
var w = Vector.random(D) // current separating plane
!
for (i <- 1 to ITERATIONS) {
 val gradient = points.map(doWork(1)).reduce(_ + _)
!
 w -= gradient
}
!
println("Final separating plane: " + w)

There are ITERATIONS sequential iterations, each mapping doWork
in parallel over every value in points, which is immediately forced by
a reduce. So,
work = ITERATIONS * |points|
CPL = ITERATIONS.
!
!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Introduction to MPI  
(Lectures 33-34)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

42

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #33 solution: MPI send and receive
1. int a[], b[];!
2. ...!
3. if (MPI.COMM_WORLD.rank() == 0) {!
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);!
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);!
6. }!
7. else {!
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);!
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);!
10. System.out.println(“a = “ + a + “ ; b = “ + b);!
11.}!
12. ...

Question: In the space below, indicate what values you expect the print
statement in line 10 to output (assuming the program is invoked with 2
processes).
!
Answer: Nothing! The program will deadlock due to mismatched tags, with
process 0 blocked at line 4, and process 1 blocked at line 8.

43

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Collective Communications
• A popular feature of MPI is its family of collective communication operations.
• Each collective operation is defined over a communicator (most often,

MPI.COMM_WORLD)
— Each collective operation contains an implicit barrier. The operation completes

and execution continues when all processes in the communicator perform the same
collective operation.

— A mismatch in operations results in deadlock e.g.,
Process 0: MPI.Bcast(...)
Process 1: MPI.Bcast(...)
Process 2: MPI.Gather(...)

• A simple example is the broadcast operation: all processes invoke the operation,
all agreeing on one root process. Data is broadcast from that root.
void Bcast(Object buf, int offset, int count, Datatype type, int root)

– Broadcast a message from the process with rank root to all processes of
the group

44

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #34 solution: MPI Gather

1. MPI.Init(args) ;!
2. int myrank = MPI.COMM_WORLD.Rank() ;!
3. int numProcs = MPI.COMM_WORLD.Size() ;!
4. int size = ...;!
5. int[] sendbuf = new int[size];!
6. int[] recvbuf = new int[???];!
7. . . . // Each process initializes sendbuf!
8. MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT, !
9. recvbuf, 0, size, MPI.INT, !
10. 0/*root*/);!
11. . . .!
12. MPI.Finalize();!

In the space below, indicate what value should be provided instead of ??? in
line 6, and how it should depend on myrank.
!
Answer: it should be numProcs*size for rank 0, and zero for all other ranks.

45

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

UPC Execution Model (Lecture 35)
• Multiple threads working independently in a SPMD fashion

—MYTHREAD specifies thread index (0..THREADS-1)
– Like MPI processes and ranks

—# threads specified at compile-time or program launch

• Partitioned Global Address Space (different from MPI)
!
!
!
!

• Threads synchronize as necessary using
—synchronization primitives
—shared variables

46

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #35 solution: UPC data
distributions

In the following example from slide 22, assume that each UPC array is
distributed by default across threads with a cyclic distribution. In the space
below, identify an iteration of the upc_forall construct for which all array
accesses are local, and an iteration for which all array accesses are non-local
(remote). Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

47

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all
of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all
of which are located remotely at thread 1

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example use of volatile declarations!
(Lecture 36)

1. public class NoVisibility {!
2. private static volatile boolean ready;!
3. private static volatile int number;!
4. !
5. private static class ReaderThread extends Thread {!
6. public void run() {!
7. while (!ready) Thread.yield()!
8. System.out.println(number)!
9. }!
10. }!
11. !
12. public static void main(String[] args) {!
13. new ReaderThread().start();!
14. number = 42;!
15. ready = true;!
16. }!
17. }

48

Declaring number and ready as volatile
ensures happens-before-edges:
14-->15-->7-->8, thereby ensuring
that only 42 will be printed

COMP 322, Spring 2014 (V.Sarkar)49

Worksheet #36 solution: Double Checked Locking
Idiom in Java

Consider two threads calling the getHelper() method in parallel:
!
1) Can you construct a possible data race if they call the unoptimized version of
getHelper() in lines 3-8?
 No race possible (monitor-based synchronization)
!
2) Can you construct a possible data race if they call the optimized version of
getHelper() in lines 12-21?
 Yes, thread T1 can assign helper in line 16 while thread T2 reads helper in line
13
!
3) How will your answer to 2) change if the helper field in line 11 was declared as
volatile?
 Technically, no data race since volatile declaration causes read and write of
helper to be (semantically) enclosed in isolated blocks. But there can be
nondeterminism.

COMP 322, Spring 2014 (V.Sarkar)50

Worksheet #36 (contd)
1. class Foo { //unoptimized version

2. private Helper helper; // Singleton pattern

3. public synchronized Helper getHelper() {

4. if (helper == null) {

5. helper = new Helper();

6. }

7. return helper;

8. }

9. . . .

!
10.class Foo { //Optimized version

11. private Helper helper; // Singleton pattern

12. public Helper getHelper() {

13. if (helper == null) {

14. synchronized(this) {

15. if (helper == null) {

16. helper = new Helper();

17. }

18. }

19. }

20. return helper;

21. }

22. . . .

COMP 322, Spring 2014 (V.Sarkar)

CPUs and GPUs have fundamentally
different design philosophies (Lecture 37)

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs

51

COMP 322, Spring 2014 (V.Sarkar)

HJ abstraction of a CUDA kernel invocation: !
async-at-gpu + block-forall + thread-forall

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

52

COMP 322, Spring 2014 (V.Sarkar)29

Worksheet #37: Branching in SIMD code
Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 13?
!
1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }
!

Solution: 3 units of time (WORK=12, CPL=3)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

How did COMP 322 work out this
semester?

• What worked (relatively) well
— Course software: Java 8, HJlib, HJ-viz, Abstract Metrics
— Worksheets, labs, videos, quizzes, lecture handouts
— Piazza, in-class demonstrations (but more are needed)

• What did not work so well
— Performance complexities for Java on STIC
— Grading delays

• Help us improve COMP 322 in the future
— Send us your suggestions for improvement
— Serve as a TA next year
— Sign up to work on improving course material and software

54

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Announcements (Recap)
• Graded midterms can be picked up from Bel Martinez in Duncan

Hall room 3122 (bellem@rice.edu)

• Homework 5 due by 11:55pm on April 24th, penalty-free extension
till May 1st
— Slip days can be applied past May 1st

• Exam 2 is a scheduled final exam to be held during 9am - 12noon
on Tuesday, May 5th, in Hertzstein Amphitheatre
— Final exam will cover material from Lectures 20 - 37
!
!

• Today is the last lecture!

55

April 23, 2015 Spring 2015
Final Exam Schedule

Office of the Registar

COURSE CRN *REPORTED EXAM TYPE EXAM DATE EXAM TIME INSTRUCTOR EXAM
ROOM

COLL 193 001 24179 No Final Sun, May 03, 2015 7:00pm - 10:00pm Cody VanZandt **

COLL 193 002 24281 No Final Wed, May 06, 2015 2:00pm - 5:00pm Cody VanZandt **

COLL 194 001 24177 No Final Sun, May 03, 2015 7:00pm - 10:00pm Spencer Shaw **

COLL 195 001 24199 Take Home Mon, May 04, 2015 7:00pm - 10:00pm Olivia Aguilar **

COLL 196 001 24235 No Final Thur, Apr 30, 2015 7:00pm - 10:00pm John Yan **

COLL 200 001 21120 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Ivo-Jan van der Werff **

COLL 200 002 21121 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Jose Aranda **

COLL 200 003 21122 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Luis Duno-Gottberg **

COLL 200 004 21123 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Paul Brace **

COLL 200 005 21124 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Michel Achard **

COLL 200 006 21125 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Jose Onuchic **

COLL 200 007 21126 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Ted Loch-Temzelides **

COLL 200 008 21127 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Karim Al-Zand **

COLL 200 009 21128 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Bridget Gorman **

COLL 200 011 21130 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Alexander Byrd **

COLL 200 012 21929 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Shelah Crear **

COLL 202 001 24123 Scheduled Thur, Apr 30, 2015 7:00pm - 10:00pm Roger Elkhouri **

COLL 203 001 24116 No Final Fri, May 01, 2015 7:00pm - 10:00pm Rodolfo Ramirez **

COLL 213 001 24225 No Final Sun, May 03, 2015 7:00pm - 10:00pm Jacob Sisco **

COLL 214 001 24121 No Final Sun, May 03, 2015 7:00pm - 10:00pm Johnny Whitehead **

COLL 215 001 24311 Not Reported Sun, May 03, 2015 7:00pm - 10:00pm Alexander Byrd **

COMP 100 001 20445 Not Reported Mon, May 04, 2015 2:00pm - 5:00pm John Greiner **

COMP 182 001 20719 ^Scheduled Thur, Apr 30, 2015 9:00am - Noon Luay Nakhleh HRZ AMP

COMP 182 002 24188 ^Scheduled Thur, Apr 30, 2015 9:00am - Noon Luay Nakhleh HRZ AMP

COMP 200 001 21010 Not Reported Wed, May 06, 2015 2:00pm - 5:00pm John Greiner **

COMP 321 001 23532 Not Reported Wed, May 06, 2015 2:00pm - 5:00pm Alan Cox **

COMP 321 002 24057 Not Reported Wed, May 06, 2015 2:00pm - 5:00pm Alan Cox **

COMP 322 A01 20754 Scheduled Tue, May 05, 2015 9:00am - Noon Vivek Sarkar HRZ AMP

COMP 322 A02 24087 ^Scheduled Tue, May 05, 2015 9:00am - Noon Vivek Sarkar HRZ AMP

COMP 390 001 20244 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm **

COMP 405 002 24256 Not Reported Wed, Apr 29, 2015 9:00am - Noon Stephen Wong **

COMP 410 001 23531 Not Reported Tue, May 05, 2015 2:00pm - 5:00pm Stephen Wong **

COMP 411 001 22425 Not Reported Tue, May 05, 2015 9:00am - Noon Robert Cartwright **

COMP 412 001 24344 Not Reported Wed, May 06, 2015 7:00pm - 10:00pm Keith Cooper **

COMP 421 001 20245 Not Reported Wed, May 06, 2015 2:00pm - 5:00pm David Johnson **

COMP 422 001 20246 Not Reported Mon, May 04, 2015 9:00am - Noon John Mellor-Crummey **

COMP 427 001 24169 Not Reported Thur, Apr 30, 2015 9:00am - Noon Dan Wallach **

COMP 430 001 21200 Not Reported Fri, May 01, 2015 9:00am - Noon Christopher Jermaine **

*Exam Type as reported to OTR in February 2015.
^Indicates update from original posting of 2/17/15.

Page 10 of 34

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Acknowledgments
• Co-instructor

— Eric Allen

• Graduate TAs
— Prasanth Chatarasi, Peng Du,
— Xian Fan, Max Grossman

• Undergraduate TAs
— Matthew Bernhard, Nicholas Hanson-Holtry,
— Yi Hua, Yoko Li, Ayush Narayan, Derek Peirce,
— Maggie Tang, Wei Zeng, Glenn Zhu

• HJlib consultant
— Shams Imam

• Administrative Staff
— Bel Martinez

56

“Education is
what survives

when what has
been learned

has been
forgotten”!

B.F. Skinner

Have
a great
summer!!

