
COMP 322 Spring 2016

Lab 11: Speculative Task Parallelism and Eureka!
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Importants tips and links

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2016/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

Maven Download : http://maven.apache.org/download.cgi

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJlib Jar File : https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/

hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar

HJlib API Documentation : http://pasiphae.cs.rice.edu/

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

1 Lab Goals

In today’s lab you will use HJlib’s eureka construct. The goals include:

• Familiarity with search and optimization style programs.

• Familiarity with the use of Eurekas in HJlib.

• Browsing HJlib Javadoc to write HJlib programs.

This lab can be downloaded from the following svn repository:

• https://svn.rice.edu/r/comp322/turnin/S16/NETID /lab 11

Use the subversion command-line client or IntelliJ to checkout the project into appropriate directories locally.

In today’s lab, you do not need to use NOTS to run performance tests.

2 Introduction to Speculative Parallelism

In lecture earlier this week, you were introduced to Eureka-style speculative parallel programs. This lab is
designed to familiarize yourself with writing speculatively task parallel programs. You will be required to
write simple speculative programs to familiarize yourself with various Eureka constructs available in HJlib.

A wide range of problems, such as combinatorial optimization, constraint satisfaction problem, image match-
ing, genetic sequence similarity, iterative optimization methods, can be reduced to tree or graph search prob-
lems. A pattern common to such algorithms to solve these problems is a eureka event, a point in the program

1 of 5

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2016/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar
http://pasiphae.cs.rice.edu/
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124


COMP 322
Spring 2016

Lab 11: Speculative Task Parallelism and Eureka!

which announces that a result has been found. Such an event curtails computation time by avoiding further
exploration of a solution space or by causing the successful termination of the entire computation. Eureka-
Style Computations include search and optimization problems that could benefit greatly from speculative
parallelism. For example, in satisfiability problems, the first eureka event can trigger the termination of the
entire computation as a proof of the existence has been found. On the other hand, in optimization problems,
a eureka event declares (and updates) the currently best-known result and can prune the computation by
causing the termination of specific tasks that cannot provide a better result.

3 Lab Tasks

The overall task in this lab is to perform pattern search in a 2D string array with various desired out-
comes. In PatternMatchEureka, you are provided a few functions: runSequential, runAsyncFinish,
runExistentialEureka, runCountEureka, runMinimalIndexEureka, and runMaximalIndexEureka. The
lab provides you the sequential version to perform a search. For this lab, you need to write parallel programs
that achieve the following:
(a) runAsyncFinish: async-finish version of the program that parallelizes the sequential program in
runSequential. As a general example, Figure 1 shows a simple async-finish program performing a search.
(b) runExistentialEureka: Eureka version for the index of any matching element using HjSearchEureka.
As a general example, Figure 2 shows a simple program performing a computation using search eureka.
(c) runCountEureka: Eureka version for the index of first COUNT matching elements using HjCountEureka.
(d) runMinimalIndexEureka: Eureka version for the minimum index of all matching element using HjExtremaEureka.
(e) runMaximalIndexEureka: Eureka version for the maximum index of all matching element using HjExtremaEureka.

Figure 1: Parallel search using just the async and finish constructs.

1 import edu.rice.hj.experimental.api.*
2 import static edu.rice.hj.experimental.ModuleZ .*

4 class ParallelAsyncFinishSearch {
5 def doWork(matrix , goal) {
6 val token = {null} // an array to store the element
7 finish {
8 for rowIndices in matrix.chunks ()
9 async {

10 for r in rowIndices
11 procRow(token , matrix(r), r, goal)
12 }
13 }
14 return token [0]
15 }
16 def procRow(eu , array , r, goal) {
17 for c in array.length ()
18 if (token [0] != null) {
19 return
20 }
21 if goal.match(array(c))
22 token [0] = [r, c]) // eureka event
23 }
24 }

If solved correctly, all the eureka versions will have similar code, just the eureka instance will need to be
changed. You may need to read up on the javadocs to figure out how to correctly initialize the various
Eureka instances. The relevant Javadoc links for this lab are:

• Eureka classes: http://www.cs.rice.edu/~vs3/hjlib/doc/index.html?edu/rice/hj/experimental/
api/package-summary.html

2 of 5

http://www.cs.rice.edu/~vs3/hjlib/doc/index.html?edu/rice/hj/experimental/api/package-summary.html
http://www.cs.rice.edu/~vs3/hjlib/doc/index.html?edu/rice/hj/experimental/api/package-summary.html


COMP 322
Spring 2016

Lab 11: Speculative Task Parallelism and Eureka!

• Eureka factories, eureka-specific finish in ModuleZ: http://www.cs.rice.edu/~vs3/hjlib/doc/index.
html?edu/rice/hj/experimental/ModuleZ.html

4 Eureka Construct and API

In this section, we introduce the eureka construct that is used by speculative tasks to trigger eureka events.
A Eureka is a new construct that provides support for speculative parallelism in an async-finish setting.
Once a Eureka construct has been resolved by reaching a stable value, it enables detection of a group of
speculative tasks that can be terminated. The operations that can be performed on a Eureka, eu, are defined
by the following interface:
(a) offer(auxiliaryData): Notifies eu that a eureka event has been triggered; additional information used
to mutate the internal state of eu is available in auxiliaryData. Whether or not the event resolves eu, it
can cause the task invoking this operation to terminate at a well-defined program point.
(b) check(auxiliaryData): This operation allows a speculative task to check whether it has become ter-
minable as, e.g., eu has been resolved. If the task has become terminable, a call to check will cause the task
to be terminated. By accepting an argument, check enables the caller to pass additional values that can be
used to determine whether to terminate a task.
(c) isResolved(): Allows a speculative task to query whether eu has been resolved. This method returns a
boolean value and never causes a task to be terminated.
(d) get(): If eu has been resolved, it returns the resolved value. Otherwise, a transitory value of eu is
returned. One is guaranteed to receive the resolved value if this operation is invoked outside the finish

scope on which eu was registered.

This interface can be used to implement Eureka patterns that include computations that produce both de-
terministic and non-deterministic results. These patterns include:
(a) Search Eureka: Search is a well-known pattern in EuSCs. Once the result is discovered, all parallel
searching entities should ideally be terminated as quickly as possible to minimize doing redundant work. A
SearchEureka construct is designed to be resolved by the first eureka event it processes, and it promptly
terminates the task that triggered the event.
(b) Count Eureka: Another variant of a parallel search is where we wish to know the first K results that
match a query. We wish to terminate the computation when at least K of the asynchronous computations
have completed successfully. A CountEureka is initialized with a count K and is resolved after exactly K
eureka events have been triggered. A call to CountEureka.get() returns a list of values of maximum length
K instead of a single value. If none of the tasks triggered a eureka, then an empty list is returned. In
general, a SearchEureka can be viewed as a CountEureka with a count of 1. Note: The newCountEureka

factory method accepts two arguments, the first argument named maxCount represents K while the second
argument named spaceForResult represents how many of the values to store as result. The common case,
as is the case with this lab, is for maxCount to equal spaceForResult.
(c) Optimization (Extrema) Eureka: Many problems from artificial intelligence can be defined as com-
binatorial optimization problems. Subproblems are derived from the originally given problem through the
addition of new constraints. The structure of the algorithm requires the ability to terminate individual
subtrees of the search tree. An example is where we are interested in finding the lowest index of the goal
item if it exists in the array. In our EuPM, the GUB is available in the MinimaEureka instance, eu, that
a speculative task is registered on and can be retrieved by a call to eu.get(). Calls to offer and check

pass the current known bounds or solution, respectively, as the argument. If the argument in the offer call
is lower than the GUB, the GUB is updated in the MinimaEureka instance, otherwise the current task is
terminated. Similarly, calls to check terminate a task if the argument is larger than the currently known
GUB in eu.

3 of 5

http://www.cs.rice.edu/~vs3/hjlib/doc/index.html?edu/rice/hj/experimental/ModuleZ.html
http://www.cs.rice.edu/~vs3/hjlib/doc/index.html?edu/rice/hj/experimental/ModuleZ.html


COMP 322
Spring 2016

Lab 11: Speculative Task Parallelism and Eureka!

5 Eureka Programming Model (EuPM)

In this section, we describe how parallelism is expressed via speculative tasks and termination of a single
task, as well as a group of tasks, is supported in the EuPM. The EuPM is an extension of the task-parallel
async-finish model where speculative tasks are created using the async keyword. A finish block can
register on a Eureka, eu, with the following pseudocode syntax (the library API includes eu as a parameter
to the finish API): finish(eu) 〈stmt〉. The finish construct simplifies the identification of the group of
tasks that participate in a eureka-style synchronization on a particular Eureka instance.

All tasks having the same immediately enclosing finish (IEF) belong to the same group and inherit the
registration on the Eureka instance, eu, from the finish scope. Finish scopes with different Eureka instance
registrations can be nested allowing composability of different speculative computations. Similarly, multiple
finish blocks can register on the same Eureka instance, eu, to represent that different speculative sub-
computations are linked. When one of the speculative tasks resolves eu it makes other tasks from the same
or different groups also registered on eu to become redundant and terminable. If none of the tasks trigger
a eureka event that resolves the registered eu, the computation completes normally when all tasks inside
each finish scope complete. Invalid calls to check/offer from a task not executing in a EuSC (i.e. finish
scope not registered on a Eureka) results in a runtime error.

The EuPM specific operations that a task, T, can perform on a Eureka, eu, are defined as follows:
(a) new: Task T can create a new instance of the Eureka construct, eu, and obtain a handle to it. The
reference eu can now be used to register on new finish scopes. The creator task can pass the reference of
eu to other tasks.
(b) registration: eu can be explicitly registered on a finish scope. Note that the task that created eu

cannot register on eu. A newly spawned task, T, implicitly registers on eu only if the IEF of T was explic-
itly registered on eu. Currently, we do not provide a mechanism for an async task to explicitly register on eu.

Figure 2: Parallel search using the Eureka model.

1 import edu.rice.hj.experimental.api.*
2 import static edu.rice.hj.experimental.ModuleZ .*

4 class ParallelEurekaSearch {
5 def doWork(matrix , goal) {
6 val eu = newSearchEureka ([-1, -1])
7 finish (eu) { // eureka registration
8 for rowIndices in matrix.chunks ()
9 async {

10 for r in rowIndices
11 procRow(eu, matrix(r), r, goal)
12 }
13 }
14 return eu.get()
15 }
16 def procRow(eu , array , r, goal) {
17 for c in array.length ()
18 eu.check ([r, c]) // termination check
19 if goal.match(array(c))
20 eu.offer ([r, c]) // trigger eureka event
21 }
22 }

Figure 2 displays a parallel 2D array search program using async and finish constructs in the EuPM.
We create the SearchEureka instance, eu, inside the factory method eurekaFactory. This instance, eu, is
registered by the finish scope defined on line 7. Hence, all async tasks launched at line 9 are automatically
registered on eu and belong to the same group. The tasks trigger the eureka event by invoking the offer

method at line 20. There is no need for an explicit return statement in procRow, as offer on a SearchEureka

causes the task to terminate. To enable cooperative termination, there are also calls to check (line 18)

4 of 5



COMP 322
Spring 2016

Lab 11: Speculative Task Parallelism and Eureka!

to check the state of the registered eureka implicitly. When eu has been resolved, check will cause the
terminable tasks to terminate. Eventually, all tasks inside the finish block at line 7 will complete execution
or be terminated, and the computation will proceed to line 14 and the result will be returned. Note that,
the final answer in this example is nondeterministic, but there are no data races involved.

6 Turning in your lab work

For this lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab.

2. Check that all the work for today’s lab is in the lab 11 turnin directory. It’s fine if you include more
rather than fewer files — don’t worry about cleaning up intermediate/temporary files.

5 of 5


	Lab Goals
	Introduction to Speculative Parallelism
	Lab Tasks
	Eureka Construct and API
	Eureka Programming Model (EuPM)
	Turning in your lab work

