
COMP 322 Spring 2016

Lab 4: Finish Accumulators and ForkJoinPool
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Implement a parallel version of NQueens using Finish Accumulators and the cutoff strategy

• Observe both the abstract and real performance of parallel NQueens with the cutoff strategy

• Understand how ForkJoinPool can be used to parallelize programs using Standard Java by implement-
ing parallel NQueens

• Understand how the Cutoff strategy improves performance

1 Setup

As in previous labs, download the lab 4 project on your machine using one of the following methods. Note:
The URL for lab 4 is https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab 4/ with NETID replaced
with your net id.

1. Download the project using the IntelliJ support for Subversion (Instructions with Images).

2. Download the project using the command line (Demo Video).

3. If you do not have subversion set up on your machine, you can download the TODO FIX URL lab 2.zip
file and manually set up the project on IntelliJ.

Note that if you have the -javaagent set up in your IntelliJ run configuration, you can use standard IntelliJ
debugging features (e.g. breakpoints) to debug your code.

2 The N-Queens Problem

This week we will revisit the simple N-Queens problem (i.e.,how can we place N queens on an N × N
chessboard so that no two queens can capture each other?) introduced last week and in the Lecture 7:
Finish Accumulators. You will edit the NQueensHjLib.java and NQueensForkJoin.java files provided in
your svn repository for this exercise. There are TODOs in these files guiding you on where to place your edits.

1. The lab code already contains a sequential implementation for solving the N-Queens problem. The
first goal of this exercise is to create a parallel version to solve the N-Queens problem using HJlib and
finish-accumulators, and then observe the abstract metrics for this solution. These changes should go
mostly in NQueensHjLib.nqueensKernel.

2. The second goal of this exercise is to use the cutoff strategy in your parallel HJlib version to see
performance improvements. For a description of the cutoff strategy, see the Lecture 10 slides posted
on the course website. These changes should modify your version of NQueensHjLib.nqueensKernel

from the previous item.

1 of ??

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/Using+IntelliJ+to+Download+and+Run+lab_1
https://www.youtube.com/watch?v=1eYdHlj6EUM
https://wiki.rice.edu/confluence/download/attachments/4435861/lab_2.zip?api=v2
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec7-slides-v1.key.pdf?version=1&modificationDate=1453960223492&api=v2
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec7-slides-v1.key.pdf?version=1&modificationDate=1453960223492&api=v2


COMP 322
Spring 2016

Lab 4: Finish Accumulators and ForkJoinPool

3. The third goal of this exercise is to create a parallel version of NQueens using ForkJoinPool from
standard Java and observe the real execution times. We have provided the ArrayDivide.java,
ArraySum.java and ArraySumFourWay.java files for examples on how to use the Fork/Join framework
in Java. These changes should go in NQueensForkJoin.compute and NQueensForkJoin.findQueens.

3 Reminders

Abstract metrics were turned on in Lab 2 but were off by default in Lab 1. In the first part of the lab, you
will use the HJlib API to optionally turn on abstract metrics. You will need to add two import statements
(they are already present in NQueensHjLib.java):

• import edu.rice.hj.runtime.config.HjSystemProperty

• import static edu.rice.hj.Module0.abstractMetrics

To turn ‘on’ abstract metrics you need to ensure “HjSystemProperty.abstractMetrics.setProperty(true)”
is invoked, just before the call to “launchHabaneroApp()”.

The purpose of the call to launchHabaneroApp() is to launch the specified code expression as a lambda to be
executed in parallel by the HJlib runtime, while all code before and after the call to launchHabaneroApp()

is executed as standard Java code. For the current version of HJlib, it is good practice to include a top-level
finish in the body of launchHabaneroApp() In particular, the current implementation of abstract metrics
may not print correct results if a top-level finish is omitted in launchHabaneroApp().

4 Demonstrating and submitting in your lab work

For this lab, you will need to demonstrate and submit your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. They will want to see your files
submitted to Subversion in your web browser and the passing unit test on your laptop.

2. Check that all the work for today’s lab is in your lab 4 directory by opening https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab 4/

in your web browser and checking that your changes have appeared.

3. Submit all your changes in the lab 4 directory using subversion. Remember to explicitly add any new
files (e.g. your report or any new Java files) you created into the subversion repository.

2 of ??


