COMP 322 Spring 2016

Lab &: Java Threads

Instructor: Vivek Sarkar, Co-Instructor: Shams Imam

Resource Summary

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Important tips and links:

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R
Piazza site : https://piazza.com/rice/spring2015/comp322/home
Java 8 Download : https://jdk8. java.net/download.html
Maven Download : http://maven.apache.org/download.cgi
IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJ-lib Jar File : http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/
0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT. jar

HJ-lib API Documentation : https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageld=14433124

1 Lab Goal

In today’s lab you will practice using Java Threads.

The Maven project for this lab is located in the following svn repository:
e https://svn.rice.edu/r/comp322/turnin/S16/NETID/1lab_8

Use the subversion command-line client to checkout the project into appropriate directories locally. For
example, you can use the following commands from a shell:

$ cd ~/comp322
$ svn checkout https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab_8

In today’s lab, you need to use NOTS to run performance tests. If you need any guidance on how to submit
jobs on NOTS manually or through the autograder, please refer to earlier labs or ask a member of the
teaching staff.

2 Conversion to Java Threads: N-Queens

1. The NQueensSeq. java program is a sequential solution to the N-Queens problem. The NQueensHjLib. java
program has been provided to you as an example parallel solution to the N-Queens problem that uses
HJlib. This version uses finish, async and finish accumulators.

10f


http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2015/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
http://www.cs.rice.edu/~vs3/hjlib/code/maven-repo/edu/rice/hjlib-cooperative/0.1.5-SNAPSHOT/hjlib-cooperative-0.1.5-SNAPSHOT.jar
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

COMP 322 Lab 8: Java Threads
Spring 2016

2. Your task is to use the NQueensThreads . java file as a template for a pure Java parallel implementation
of NQueens using Java threads concepts introduced in Lecture 23. You may not use any constructs
from the HJlib.

You will likely find it helpful to collect thread references in a data structure like an array after the
threads are started, so that you have access to the references to perform calls to join(). For simplicity,
you can include joins within each call to nqueensKernel (). This is correct, but more restrictive than
the finish/async structure for the given code (which will require a more complicated data structure like
a ConcurrentLinkedQueue to collect all the thread references).

3. When implementing your NQueensThreads solution you will likely find it useful for performance to use
the cutoff strategy. Refer to the provided HJlib solution for hints on where to place this cutoff in the
Java Threads version.

4. To test your solution, you are provided with a NQueensPerformanceTest class that validates the cor-
rectness and performance of your solution 12x12 and 14x14 boards. To complete this portion of the
lab, you should submit these performance tests to NOTS by either modifying the provided myjob.slurm
template and submitting manually, or through the autograder. The NQueensPerformanceTest class
will also compare sequential performance to the provided HJlib version. Our experiments show the
following performance with the reference solutions:

(a) NQueensSeq for board size of 14: 31,000 ms on average.
(b) NQueensThreads for board size of 14: 4,600 ms on average.

(¢) NQueensHjLib with input argument just 14: 4,200 ms on average.

3 Conversion to Java threads: Spanning Tree

1. The SpanningTreeSeq. java program is an example sequential solution to the spanning tree problem.

The SpanningTreeAtomicHjLib.java program is a provided parallel solution to the minimum span-
ning tree problem. This version uses finish and async constructs along with an AtomicReference.

2. Your task is to convert SpanningTreeAtomicHjLib.java to a pure Java program. You should modify
the provided SpanningTreeAtomicThreads. java file. Use Java threads instead of finish/async. (The
AtomicReference calls can stay unchanged.) As before, you can include joins within each call to
compute () for simplicity, or you can use a ConcurrentLinkedQueue for a more faithful simulation of
a finish construct.

3. You have been provided with tests for your parallel spanning tree implementation in SpanningTreeP-
erformanceTest. To complete this portion of the lab, you should submit these performance tests to
NOTS by either modifying the provided myjob.slurm template and submitting manually, or through
the autograder.

4. Compare the execution time of following versions of the spanning tree problem. Like with NQueens,
you may choose to add cutoff threshold values for this program, so as to limit the number of Java
threads that will be created (thereby reducing overhead). Below are some reference execution times:

(a) SpanningTreeAtomicThreads with input arguments 50000 and 3000 and a cutoff depth of 5: 450
ms.

(b) SpanningTreeAtomicHjLib with input arguments 50000 and 3000: 325 ms.

20f



COMP 322 Lab 8: Java Threads
Spring 2016

4 Programming Tips and Pitfalls for Java Threads

e Remember to call the start() method on any thread that you create. Otherwise, the thread’s compu-
tation does not get executed.

e Since the join() method may potentially throw an InterruptedException, you will either need to enclose
each call to join() within a try-catch block, or add a throws Interrupted Exception clause to the definition
of the method that includes the call to join().

5 Turning in your lab work

For this lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. Be prepared to explain the lab at a
high level.

2. Check that all the work for today’s lab is in the 1ab_8 turnin directory. It’s fine if you include more
rather than fewer files — don’t worry about cleaning up intermediate/temporary files.

30f



	Lab Goal
	Conversion to Java Threads: N-Queens
	Conversion to Java threads: Spanning Tree
	Programming Tips and Pitfalls for Java Threads
	Turning in your lab work 

