
COMP 322 Spring 2016

Lab 9: Java Locks
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Experimentation with Java Locks (Coarse-grain locks & ReadWrite locks)

Importants tips and links

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R

Piazza site : https://piazza.com/rice/spring2016/comp322/home

Java 8 Download : https://jdk8.java.net/download.html

Maven Download : http://maven.apache.org/download.cgi

IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJlib Jar File : https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/

hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar

HJlib API Documentation : http://pasiphae.cs.rice.edu/

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

Today’s lab is accessible at:

https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab 9

Please pull this project down, import it into IntelliJ, and verify you can build it. Feel free to use whatever
methods you are most comfortable with to achieve this (e.g. command-line SVN vs. IntelliJ SVN, automatic
Maven-based JAR configuration vs. manual JAR imports, etc). Note that this lab will not have a
dependency on HJlib and you will not need the -javaagent command line option in the run
configurations you use in IntelliJ.

1 Sorted Linked List Example using Java’s Synchronized Methods

In today’s lab you will practice using Java Locks. Java Locks were introduced in Lecture 26.

In the provided code there are three files to focus on: SyncList.java, CoarseList.java, and RWCoarseList.java.

SyncList.java implements a thread-safe sorted linked list that supports contains(), add() and remove()

methods. The provided testSynchronized test in Lab9PerformanceTest.java repeatedly calls these three
methods with a distribution that aims for 98% read operations (calls to contains()), 1% add operations,
and 1% remove operations. Since all three methods are declared as synchronized in SyncList.java, all calls
will be serialized on a single SyncList object.

For this section, simply verify that you can compile and run the testSynchronized test locally using either
IntelliJ or Maven. This test (and the others for the following sections of this lab) tests the throughput in
operations per second of each concurrent list implementation with varying numbers of threads. The most
important metric printed is the “Operations per second”.

1 of 3

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2016/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.9/hjlib-cooperative-0.1.9.jar
http://pasiphae.cs.rice.edu/
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124


COMP 322
Spring 2016

Lab 9: Java Locks

2 Use of Coarse-Grained Locking instead of Java’s Synchronized
Methods

The goal of this section is to replace the use of Java’s synchronized method in SyncList.java by using
explicit locking instead. For this section, your tasks are as follows:

1. Transfer the contents of the three functions contains, add, and remove from SyncList.java into
CoarseList.java.

2. Modify CoarseList.java to allocate a single instance of a ReentrantLock when creating an instance
of CoarseList.

3. Replace the three occurrences of “synchronized” in SyncList by appropriate calls to lock() and
unlock() on the allocated ReentrantLock. Remember to use a try-finally block as follows to ensure
that unlock() is always called:

lock.lock();

try { ... }

finally { lock.unlock(); }

4. Compile and run the testCoarseGrainedLocking test in Lab9PerformanceTest.java. Compare its
performance to testing the provided synchronized version using testSynchronized. Is there any
difference? Do you expect any difference? Note that we are only running local tests at the moment,
so small variations in performance are expected.

3 Use of Read-Write Locks

The goal of this section is to replace the use of a ReentrantLock in CoarseList.java by a ReentrantReadWriteLock,
so as to leverage the fact that the majority of the operations (98% by default) are calls to contains() which
are read-only in nature. For this section, your tasks are as follows:

1. Copy the contents of CoarseList.java into RWCoarseList.java.

2. Replace the instance of ReentrantLock by an instance of ReentrantReadWriteLock.

3. Replace the calls to lock() by readLock.lock() or writeLock.lock() where appropriate in RWCoarseList.java.
Likewise for unlock().

4. Compile and run the testReadWriteLocks test in Lab9PerformanceTest.java. Compare its perfor-
mance to the locking and synchronized versions using testSynchronized and testCoarseGrainedLocking.
Is there any change? Do you expect any difference? Note that we are only running local tests at the
moment, so small variations in performance are expected.

4 Testing on NOTS

Now that we have implementations of a concurrent list using synchronized, locks, and read-write locks we
will test their performance on the NOTS cluster to measure the actual performance of each implementation
without interference on your laptop.

To do so, you can either use the provided myjob.slurm file or upload to the autograder. As usual, when using
the myjob.slurm file please open it to fix any TODO items. If you use the autograder, feel free to ignore the
printed grade and simply focus on the output in the section labeled “Performance Tests (16 cores)”.

2 of 3



COMP 322
Spring 2016

Lab 9: Java Locks

5 Turning in your lab work

For lab 9, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. In particular, the TAs will want to see
the output of testSynchronized, testCoarseGrainedLocking, and testReadWriteLocks running on
NOTS through either the autograder or the provided SLURM script.

2. Commit your work to your lab 9 turnin folder. Check that all the work for today’s lab is in your
lab 9 directory by opening https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab 9/ in your
web browser and checking that your changes have appeared.

3 of 3


	Sorted Linked List Example using Java's Synchronized Methods
	Use of Coarse-Grained Locking instead of Java's Synchronized Methods
	Use of Read-Write Locks
	Testing on NOTS
	Turning in your lab work 

