
COMP 322: Fundamentals of
Parallel Programming

Lecture 17: Abstract vs. Real Performance
— an “under the hood” look at HJlib

COMP 322 Lecture 17 19 February 2016

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

Compute the WORK and CPL values for the program shown below. (WORK =
204, CPL = 102). How would they be different if the signal() statement was
removed? (CPL would increase to 202.)

Solution to Worksheet #16:
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Data-Driven Futures - Common Pitfall

10. void foo(Map<String, DDF> store) {
11. finish {
12. DDF fooDdf = new DDF()
13. async {
14. bar(store)
15. fooDdf.put(1)
16. }
17. println(“Spawned async”);
18. store.put(“foo”, fooDdf)
19. }
20. }
21.
22. void bar(Map<String, DDF> store) {
23. DDF barDdf = new DDF()
24. DDF fooDdf = store.get(“foo”)
25. async await(foo) {
26. barDdf.put(1 + fooDdf.get())
27. }
28. store.put(“bar”, barDdf)
29. }

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

 void foo(Map<String, DDF> store) {
 finish {
 DDF fooDdf = new DDF()
 store.put(“foo”, fooDdf)
 async {
 bar(store)
 fooDdf.put(1)
 }
 println(“Spawned async”);
 }
 }

 void bar(Map<String, DDF> store) {
 DDF barDdf = new DDF()
 store.put(“bar”, barDdf)
 DDF fooDdf = store.get(“foo”)
 async await(foo) {
 barDdf.put(1 + fooDdf.get())
 }
 }

Lab 6 Solution - Cholesky with DDFs

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Iterative Averaging with Chunking

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Num tasks=5
Array size=27

Chunked Iterative Averaging with Barriers

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Num tasks=5
Array size=27

Chunked Iterative Averaging with Phasers

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Num tasks=5
Array size=27

Lab 6 Iterative Averaging - Missing Speedup?

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

• Many of you got the correct code but were missing speedup

• The reason is that the computation was memory bound

• Memory access was dominating computation time, did not get
benefits from parallelism

• The following change helps observe the (near perfect) speedup 
for (int j = startIncJ; j <= endIncJ; j++) {  
 myNew[j] =(myVal[j - 1] + myVal[j + 1]) / 2.0;  
}

to  
for (int j = startIncJ; j <= endIncJ; j++) {  
 myNew[j] = Math.log(Math.exp( 
 (myVal[j - 1] + myVal[j + 1]) / 2.0));  
}

HJ-lib Compilation and Execution
Environment

Foo.java

Java compiler Java compiler translates Foo.hj to Foo.class, along with
calls to HJ-lib with lambda parameters (async, finish,
future, etc)

Foo.class

HJ-lib source program is a standard Java 8 program

HJ-lib Runtime Environment =
Java Runtime Environment +

HJ-lib libraries

HJ Abstract Performance Metrics,
HJ-Viz output
(all enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker threads
(value of m depends on options or default value)

Java 8 IDE

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

All the “magic” happens here!

Looking under the hood — let’s start
with the hardware

An example compute node with two quad-core Intel Xeon (CPUs,
for a total of 8 cores/node (NOTS has 16 cores/node)

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Main Memory (DRAM)

Next, how does a process run on a single core?

Context switches between two processes can be very expensive!
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox, Scott Rixner)

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

• A Java program executes in a
single Java Virtual Machine (JVM)
process with multiple threads

• Threads associated with a single
process can share the same data

• Java main program starts with a
single thread (T1), but can create
additional threads (T2, T3, T4, T5)
via library calls

• Java threads may execute
concurrently on different cores, or
may be context-switched on the
same core

What happens when executing a Java
program?

12

T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on
Concurrency (Alan Cox, Scott Rixner)

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Thread-level Context Switching on the same
processor core

13

• Thread context switch is cheaper than a process context switch,
but is still expensive (just not “very” expensive!)

• It would be ideal to just execute one thread per core (or hardware
thread context) to avoid context switches

Figure source: COMP 321 lecture on Concurrency (Alan Cox, Scott Rixner)

Thread 1!
(main thread)!

Thread 2!
(peer thread)!

Time!
thread context switch!

thread context switch!

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Now, what happens in a task-parallel Java
program (e.g., HJ-lib, Java ForkJoin, etc)

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

• Task-parallel runtime creates a small number of worker threads,
typically one per core

• Workers push new tasks and “continuations” into a logical work
queue

• Workers pull task/continuation work items from logical work queue
when they are idle (remember greedy scheduling?)

HJ-Lib Tasks &
Continuations

Worker threads

Operating
System

Hardware cores

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core
• And of customers as tasks

source: http://www.deviantart.com/art/Randomness-20-178737664

17 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

All is well until a task blocks …

2

• A blocked task/customer can hold up the entire line
• What happens if each checkout counter has a blocked

customer?
source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

. . .

18 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

2source: http://www.deviantart.com/art/Randomness-5-90424754

• Creating too many worker threads can exhaust system
resources (OutOfMemoryError), and also leads to context-
switch overheads when blocked worker threads get unblocked
• Context-switching in checkout counters stretches the analogy — maybe

assume that there are 8 keys to be shared by all active checkout counters?

Blocking Runtime (contd)

• Examples of blocking operations

— End of finish

— Future get

— Barrier next

• Blocks underlying worker thread, and launches an additional
worker thread

• Too many blocking constructs can result in lack of performance
and exceptions

— java.lang.IllegalStateException: Error in
executing blocked code! [89 blocked threads]

— Maximum number of worker threads can be configured if
needed

— HjSystemProperty.maxThreads.set(100);

19 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

20 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Approach 2: Suspend task continuations at blocking
points (as in HJ-Lib’s Cooperative Runtime)

2

• Task actively suspends itself and yields control back to the
worker

• Task’s continuation is stored in the suspended queue and
added back into the ready queue when it is unblocked

• Pro: No overhead of creating additional worker threads
• Con: Complexity and overhead of creating continuations

C
he

ck
ou

t
co

un
te

r

Ready
Queue Suspended

Queue

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking

Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following a blocking operation, such as an end-
finish, future get(), or barrier

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between different

tasks (depends on scheduling policy)
1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Continuations

21 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

NOTE: these are
“one-shot”

continuations, unlike
continuations in

functional programs
that can be called

multiple times

22 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Cooperative Scheduling
(view from a single worker)

10

block

…

unblock

suspend

suspend

…

resume

suspend/complete

Useful work
for some

other task on
same worker

thread
block

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

23 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

HJ-lib’s Cooperative Runtime

22

…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task Queues
Suspended Tasks

registered with “Event-Driven
Controls”

Worker Threads Synchronization objects
that use EDCs

EDC

{ }task
{ }task

{ }task

Any operation that contributes to unblocking a task can be viewed as an event e.g., task
termination in finish, return from a future, signal on barrier, put on a data-driven-future, …

Why are Data-Driven Tasks (DDTs)
more efficient than Futures?

• Consumer task blocks on get() for each future that it reads,
whereas async-await does not start execution till all Data-
Driven Futures (DDFs) are available
— An “asyncAwait” statement does not block the worker,

unlike a future.get()
— No need to create a continuation for asyncAwait; a data-

driven task is directly placed on the Suspended queue by
default

• Therefore, DDTs can be executed on a Blocking Runtime
without the need to create additional worker threads, or on a
Cooperative Runtime without the need to create
continuations

24 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

