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Compute the WORK and CPL values for the program shown below.  (WORK = 
204, CPL = 102).  How would they be different if the signal() statement was 
removed?  (CPL would increase to 202.)

Solution to Worksheet #16:  
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2.  final HjPhaser ph = newPhaser(SIG_WAIT);
3.  asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4.    A(0); doWork(1);   // Shared work in phase 0
5.    signal();   
6.    B(0); doWork(100); // Local work in phase 0
7.    next(); // Wait for T2 to complete shared work in phase 0
8.    C(0); doWork(1);
9.  });
10.  asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11.    A(1); doWork(1);   // Shared work in phase 0
12.    next(); // Wait for T1 to complete shared work in phase 0
13.    C(1); doWork(1);
14.    D(1); doWork(100); // Local work in phase 0
15.  });
16.}); // finish
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Data-Driven Futures - Common Pitfall

10.  void foo(Map<String, DDF> store) {
11.    finish {
12.      DDF fooDdf = new DDF()
13.      async {
14.        bar(store)
15.        fooDdf.put(1)
16.      }
17.      println(“Spawned async”);
18.      store.put(“foo”, fooDdf)
19.    }
20.  }
21. 
22.  void bar(Map<String, DDF> store) {
23.    DDF barDdf = new DDF()
24.    DDF fooDdf = store.get(“foo”)
25.    async await(foo) {
26.      barDdf.put(1 + fooDdf.get())
27.    }
28.    store.put(“bar”, barDdf)
29.  }
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  void foo(Map<String, DDF> store) {
    finish {
      DDF fooDdf = new DDF()
      store.put(“foo”, fooDdf)
      async {
        bar(store)
        fooDdf.put(1)
      }
      println(“Spawned async”);
   }
  }
 
  void bar(Map<String, DDF> store) {
    DDF barDdf = new DDF()
    store.put(“bar”, barDdf)
    DDF fooDdf = store.get(“foo”)
    async await(foo) {
      barDdf.put(1 + fooDdf.get())
    }
 }

Lab 6 Solution - Cholesky with DDFs
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Iterative Averaging with Chunking
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Num tasks=5 
Array size=27

Chunked Iterative Averaging with Barriers
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Num tasks=5 
Array size=27



Chunked Iterative Averaging with Phasers
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Num tasks=5 
Array size=27

Lab 6 Iterative Averaging - Missing Speedup?
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• Many of you got the correct code but were missing speedup 

• The reason is that the computation was memory bound 

• Memory access was dominating computation time, did not get 
benefits from parallelism 

• The following change helps observe the (near perfect) speedup 
for (int j = startIncJ; j <= endIncJ; j++) {  
    myNew[j] =(myVal[j - 1] + myVal[j + 1]) / 2.0;  
} 

to  
for (int j = startIncJ; j <= endIncJ; j++) {  
    myNew[j] = Math.log(Math.exp(  
         (myVal[j - 1] + myVal[j + 1]) / 2.0));  
}



HJ-lib Compilation and Execution 
Environment

Foo.java

Java compiler Java compiler translates Foo.hj to Foo.class, along with 
calls to HJ-lib with lambda parameters (async, finish, 
future, etc)

Foo.class

HJ-lib source program is a standard Java 8 program

HJ-lib Runtime Environment = 
Java Runtime Environment + 

HJ-lib libraries

HJ Abstract Performance Metrics, 
HJ-Viz output 
(all enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker threads 
(value of m depends on options or default value)

Java 8 IDE
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All the “magic” happens here!

Looking under the hood — let’s start 
with the hardware

An example compute node with two quad-core Intel Xeon (CPUs, 
for a total of 8 cores/node (NOTS has 16 cores/node)
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Main Memory (DRAM)



Next, how does a process run on a single core?

Context switches between two processes can be very expensive! 
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox, Scott Rixner)
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• A Java program executes in a 
single Java Virtual Machine (JVM) 
process with multiple threads 

• Threads associated with a single 
process can share the same data 

• Java main program starts with a 
single thread (T1), but can create 
additional threads (T2, T3, T4, T5) 
via library calls 

• Java threads may execute 
concurrently on different cores, or 
may be context-switched on the 
same core

What happens when executing a Java 
program?
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T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on 
Concurrency (Alan Cox, Scott Rixner)
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Thread-level Context Switching on the same 
processor core
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• Thread context switch is cheaper than a process context switch, 
but is still expensive (just not “very” expensive!) 

• It would be ideal to just execute one thread per core (or hardware 
thread context) to avoid context switches 

Figure source: COMP 321 lecture on Concurrency (Alan Cox, Scott Rixner)

Thread 1!
(main thread)!

Thread 2!
(peer thread)!

Time!
thread context switch!

thread context switch!
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Now, what happens in a task-parallel Java 
program (e.g., HJ-lib, Java ForkJoin, etc)
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• Task-parallel runtime creates a small number of worker threads, 
typically one per core 

• Workers push new tasks and “continuations” into a logical work 
queue 

• Workers pull task/continuation work items from logical work queue 
when they are idle (remember greedy scheduling?)

HJ-Lib Tasks & 
Continuations

Worker threads

Operating 
System

Hardware cores
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Task-Parallel Model: Checkout Counter Analogy
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• Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,  
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store
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Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core 
• And of customers as tasks

source: http://www.deviantart.com/art/Randomness-20-178737664
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All is well until a task blocks …

2

• A blocked task/customer can hold up the entire line 
• What happens if each checkout counter has a blocked 

customer?
source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

. . .
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Approach 1: Create more worker threads 
(as in HJ-Lib’s Blocking Runtime)

2source: http://www.deviantart.com/art/Randomness-5-90424754

• Creating too many worker threads can exhaust system 
resources  (OutOfMemoryError), and also leads to context-
switch overheads when blocked worker threads get unblocked 
• Context-switching in checkout counters stretches the analogy — maybe 

assume that there are 8 keys to be shared by all active checkout counters?



Blocking Runtime (contd)

• Examples of blocking operations 

— End of finish 

— Future get 

— Barrier next 

• Blocks underlying worker thread, and launches an additional 
worker thread 

• Too many blocking constructs can result in lack of performance 
and exceptions 

— java.lang.IllegalStateException: Error in 
executing blocked code! [89 blocked threads]

— Maximum number of worker threads can be configured if 
needed 

— HjSystemProperty.maxThreads.set(100);
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Approach 2: Suspend task continuations at blocking 
points (as in HJ-Lib’s Cooperative Runtime)

2

• Task actively suspends itself and yields control back to the 
worker 

• Task’s continuation is stored in the suspended queue and 
added back into the ready queue when it is unblocked 

• Pro: No overhead of creating additional worker threads 
• Con: Complexity and overhead of creating continuations
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Ready 
Queue Suspended 

Queue

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking



Continuations
• A continuation is one of two kinds of program points 

—The point in the parent task immediately following an async 
—The point immediately following a blocking operation, such as an end-
finish, future get(), or barrier 

• Continuations are also referred to as task-switching points 
—Program points at which a worker may switch execution between different 

tasks (depends on scheduling policy) 
1.finish { // F1 

2.  async A1; 

3.  finish { // F2 

4.    async A3; 

5.    async A4; 

6.  } 

7.  S5; 

8.}

Continuations
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NOTE: these are 
“one-shot” 

continuations, unlike 
continuations in 

functional programs 
that can be called 

multiple times
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Cooperative Scheduling 
(view from a single worker)
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HJ-lib’s Cooperative Runtime
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…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task Queues
Suspended Tasks  

registered with “Event-Driven 
Controls”

Worker Threads Synchronization objects  
that use EDCs

EDC

{          }task
{          }task

{          }task

Any operation that contributes to unblocking a task can be viewed as an event e.g., task 
termination in finish, return from a future, signal on barrier, put on a data-driven-future, …

Why are Data-Driven Tasks (DDTs) 
more efficient than Futures?

• Consumer task blocks on get() for each future that it reads, 
whereas async-await does not start execution till all Data-
Driven Futures (DDFs) are available 
— An “asyncAwait” statement does not block the worker, 

unlike a future.get()  
— No need to create a continuation for asyncAwait; a data-

driven task is directly placed on the Suspended queue by 
default 

• Therefore, DDTs can be executed on a Blocking Runtime 
without the need to create additional worker threads, or on a 
Cooperative Runtime without the need to create 
continuations
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