
COMP 322: Fundamentals of
Parallel Programming

Lecture 7: Parallel N-Queens algorithm,
Finish Accumulators

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

http://comp322.rice.edu
COMP 322 Lecture 7 27 January 2016

There are four variants of the Binomial Cooefficients program provided
in four different HJlib methods in the next page:

a. Sequential Recursive without Memoization (chooseRecursiveSeq())
b. Parallel Recursive without Memoization (chooseRecursivePar())
c. Sequential Recursive with Memoization (chooseMemoizedSeq())
d. Parallel Recursive with Memoization (chooseMemoizedPar())

Your task is to analyze the WORK, CPL, and Ideal Parallelism for these
four versions, for the input N = 4, and K = 2. Assume that each call to
ComputeSum() has COST = 1, and all other operations are free.
Complete all entries in the table:

Worksheet #6 solution: Parallelizing Pascal’s
Triangle with Futures and Memoization

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Variant Work CPL Ideal
Parallelism

chooseRecursiveSeq 5 5 1
chooseRecursivePar 5 3 5/3 = 1.67
chooseMemoizedSeq 4 4 1
chooseMemoizedPar 4 3 4/3 = 1.33

REMINDER: computation structure of C(4,2)
Nodes with calls to ComputeSum() are in red

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

C(4, 2)

C(3, 1) C(3, 2)

C(2, 0) C(2, 1)

1 C(1, 0) C(1, 1)

1 1

C(2, 1) C(2, 2)

1

= 2 = 2

= 3 = 3

= 6

C(1, 0) C(1, 1)

1 1

Comparing Async-Finish with Future-Get

• Similarities:
• Finish and Get can be used to synchronize and

avoid data races
• Finish waits for both async and future tasks

• Differences:
• Async supports side effects, Futures have return

values
• Future gets can model a larger set of computation

graphs than async-finish
• Finish can wait for an unbounded set of tasks

(determined at runtime)

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

The N-Queens Problem
How can we place n queens on an n×n chessboard
so that no two queens can capture each other?

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Q
x
x
x

x
x

x

xx

x

xx

x
x

x
xx

x
x
x
xx

x
x

x
x

x
x

A queen can move any number of
squares horizontally, vertically, and
diagonally.
Here, the possible target squares of the
queen Q are marked with an x.

Backtracking and Decision Tree states

• Idea: Start at the root of the decision tree and move
downwards, that is, make a sequence of decisions,
until you either reach a solution or you enter a state
from where no solution can be reached by any further
sequence of decisions.

• In the latter case, backtrack to the parent of the current
state and take a different path downwards from there. If
all paths from this state have already been explored,
backtrack to its parent.

• Continue this procedure until you find a solution (or all
solutions), or establish that no solution exists.

• A state in the decision tree can be encoded as an array,
a[0..c-1] for c columns, where a[i] = row position of
queen in column i.

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Backtracking in Decision Trees

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board a = []

a = [0] a = [1]

a = [0 2] a = [0 3] a = [1 3]

a = [0 3 1]
a = [1 3 0]

a = [1 3 0 2]

Sequential solution for NQueens
(counting all solutions)

1. count = 0;
2. size = 8; nqueens_kernel(new int[0], 0);
3. System.out.println(“No. of solutions = “ + count);
4. . . .
5. void nqueens_kernel(int [] a, int depth) {
6. if (size == depth) count++;
7. else
8. /* try each possible position for queen at depth */
9. for (int i = 0; i < size; i++) {
10. /* allocate a temporary array and copy array a into it */
11. int [] b = new int [depth+1];
12. System.arraycopy(a, 0, b, 0, depth);
13. b[depth] = i; // Try to place queen in row i of column depth
14. if (ok(depth+1,b)) // check if placement is okay
15. nqueens_kernel(b, depth+1);
16. } // for
17. } // nqueens_kernel()

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

How to extend sequential solution to
obtain a parallel solution?

1. count = 0;
2. size = 8; finish nqueens_kernel(new int[0], 0);
3. System.out.println(“No. of solutions = “ + count);
4. . . .
5. void nqueens_kernel(int [] a, int depth) {
6. if (size == depth) count++;
7. else
8. /* try each possible position for queen at depth */
9. for (int i = 0; i < size; i++) async {
10. /* allocate a temporary array and copy array a into it */
11. int [] b = new int [depth+1];
12. System.arraycopy(a, 0, b, 0, depth);
13. b[depth] = i; // Try to place queen in row i of column depth
14. if (ok(depth+1,b)) // check if placement is okay
15. nqueens_kernel(b, depth+1);
16. } // for
17. } // nqueens_kernel()

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

But there’s a
data race on
count?

Extending Finish Construct with
“Finish Accumulators” (Pseudocode)

• Creation
 accumulator ac = newFinishAccumulator(operator, type);

– Operator must be associative and commutative

• Registration
 finish (ac1, ac2, ...) { ... }

– Accumulators ac1, ac2, ... are registered with the finish scope

• Accumulation

 ac.put(data);
– Can be performed in parallel by any statement in finish scope that registers

ac. Note that a put contributes to the accumulator, but does not overwrite
it.

• Retrieval

 ac.get();

– Returns initial value if called before end-finish, or final value after end-finish
– get() is nonblocking because finish provides the necessary synchronization

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

How to extend sequential solution to
obtain a parallel solution?

1. FinishAccumulator ac = newFinishAccumulator(Operator.SUM, int.class);
2. size = 8; finish(ac) nqueens_kernel(new int[0], 0);
3. System.out.println(“No. of solutions = “ + ac.get().intValue());
4. . . .
5. void nqueens_kernel(int [] a, int depth) {
6. if (size == depth) ac.put(1);
7. else
8. /* try each possible position for queen at depth */
9. for (int i = 0; i < size; i++) async {
10. /* allocate a temporary array and copy array a into it */
11. int [] b = new int [depth+1];
12. System.arraycopy(a, 0, b, 0, depth);
13. b[depth] = i; // Try to place queen in row i of column depth
14. if (ok(depth+1,b)) // check if placement is okay
15. nqueens_kernel(b, depth+1);
16. } // for
17. } // nqueens_kernel()

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. Non-owner task cannot access accumulator outside registered finish
// T1 allocates accumulator a

accumulator a = newFinishAccumulator(...);

async { // T2 cannot access a

 a.put(1); Number v1 = a.get();

}

2. Non-owner task cannot register accumulator with a finish
// T1 allocates accumulator a

accumulator a = newFinishAccumulator(...);

async {

 // T2 cannot register a with finish

 finish (a) { async a.put(1); }

}

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Error Conditions with Finish Accumulators

