
COMP 322: Fundamentals of
Parallel Programming

Lecture 37: Algorithms based on
Parallel Prefix (Scan) operations (contd)

COMP 322 Lecture 37 17 April 2017

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu
Acknowledgements:
• Book chapter on “Prefix Sums and Their Applications”, Guy E. Blelloch, CMU
• Slides on “Parallel prefix adders”, Kostas Vitoroulis, Concordia University

http://comp322.rice.edu/

• In Lecture 13, we learned how to compute the parallel prefix sum (set of partial
sums), X, for an input array A of size n with WORK = O(n) and CPL = O(log n)

— For P processors, TP = O(n/P + log (P))

• In Lecture 36, we learned the scan operator which generalizes parallel prefix sum to
parallel prefix for any binary associative operator, ⊕ (need not be restricted to xor).

• Specifically, scan takes a binary associative operator ⊕, and an array of n elements
[A0, A1, ..., An−1] as input, and returns array [A0, (A0 ⊕ A1), ..., (A0 ⊕ A1 ⊕ ... ⊕ An−1)]
as output. The output from scan can also be specified as a recurrence:

• From Lecture 13, we see that scan can also be performed with WORK = O(n) and
CPL = O(log n)

• Note that any constant sequence of scan operators can also be performed with
WORK = O(n) and CPL = O(log n)

Recap of Parallel Prefix and Scan

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

48 Chapter 1. Prefix Sums and Their Applications

along with a set of initial values x0, · · · , xm−1.
The scan operation is the special case of a recurrence of the form

xi =

{

a0 i = 0
xi−1 ⊕ ai 0 < i < n,

(1.4)

where ⊕ is any binary associative operator. This section shows how to reduce
a more general class of recurrences to equation (1.4), and therefore how to
use the scan algorithm discussed in Section 1.2 to solve these recurrences in
parallel.

1.4.1 First-Order Recurrences

We initially consider first-order recurrences of the following form

xi =

{

b0 i = 0
(xi−1 ⊗ ai) ⊕ bi 0 < i < n,

(1.5)

where the ai’s and bi’s are sets of n arbitrary constants (not necessarily scalars)
and ⊕ and ⊗ are arbitrary binary operators that satisfy three restrictions:

1. ⊕ is associative (i.e. (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)).
2. ⊗ is semiassociative (i.e. there exists a binary associative operator

⊙ such that (a ⊗ b) ⊗ c = a ⊗ (b ⊙ c)).
3. ⊗ distributes over ⊕ (i.e. a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)).

The operator ⊙ is called the companion operator of ⊗. If ⊗ is fully associative,
then ⊙ and ⊗ are equivalent.

We now show how (1.5) can be reduced to (1.4). Consider the set of
pairs

ci = [ai, bi] (1.6)

and define a new binary operator • as follows:

ci • cj ≡ [ci,a ⊙ cj,a, (ci,b ⊗ cj,a) ⊕ cj,b] (1.7)

where ci,a and ci,b are the first and second elements of ci, respectively.
Given the conditions on the operators ⊕ and ⊗, the operator • is asso-

ciative as we show below:

(ci • cj) • ck

= [ci,a ⊙ cj,a, (ci,b ⊗ cj,a) ⊕ cj,b] • ck

= [(ci,a ⊙ cj,a) ⊙ ck,a, (((ci,b ⊗ cj,a) ⊕ cj,b) ⊗ ck,a) ⊕ ck,b]

Parallelizing Prefix Sum (Lecture 13)
Observation: each prefix sum can be decomposed into reusable terms of

power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial sum idea
from Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial
sum terms in tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum
terms stored in upward sweep

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Upward sweep is just like Parallel Reduction, except that partial sums
are also stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent 15

2

Input array, A:

4

6
15

5 4

9

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left

child’s subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

0

4

6
15

5 4

9

Inclusive prefix sums

 [101 111 011 001 100 010 111 010]

1.A = [5 7 3 1 4 2 7 2]
2.A⟨0⟩ = [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7]
4.A⟨1⟩ = [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7]
6.A⟨2⟩ = [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7]

Worksheet #36 problem statement:
Parallelizing the Split step in Radix Sort

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

The Radix Sort algorithm loops over the bits in the binary representation of the
keys, starting at the lowest bit, and executes a split operation for each bit as
shown below. The split operation packs the keys with a 0 in the corresponding bit
to the bottom of a vector, and packs the keys with a 1 to the top of the same
vector. It maintains the order within both groups. The sort works because each
split operation sorts the keys with respect to the current bit and maintains the
sorted order of all the lower bits. Your task is to show how the split operation can
be performed in parallel using scan operations, and to explain your answer.

Worksheet #36 solution:
Parallelizing the Split step in Radix Sort

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1.4 Recurrence Equations 47

procedure split(A, Flags)

I-down ← +-prescan(not(Flags))

I-up ← n - +-scan(reverse-order(Flags))

in parallel for each index i
if (Flags[i])
Index[i] ← I-up[i]

else

Index[i] ← I-down[i]
result ← permute(A, Index)

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0]

I-down = [0 0 0 0 0 1 2 2]
I-up = [3 4 5 6 6 6 7 7]
Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

PRAM.2 If we assume that n keys are each O(lg n) bits long, then the overall
algorithm runs in time:

O((
n

p
+ lg p) lg n) = O(

n

p
lg n + lg n lg p).

1.4
Recurrence Equations

This section shows how various recurrence equations can be solved using
the scan operation. A recurrence is a set of equations of the form

xi = fi(xi−1, xi−2, · · · , xi−m), m ≤ i < n (1.3)

2On an CREW PRAM we can use the scan described in Chapter 4 to get a time of O(n/p+

lg p/ lg lg p).

7 87

prescan(+, not(Flags)) // prescan = exclusive prefix sum
rev(n - scan(+, rev(Flags)) // rev = reverse

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

8

Binary Addition

Each stage ii adds bits ai, bi, ci-1 and produces bits si, ci
The following hold:

y3 y2 y1

x0x1x2x3
+

y0

This is the pen and paper addition of
two 4-bit binary numbers x and y.
c represents the generated carries.
s represents the produced sum bits.

A stage of the addition is the set of
x and y bits being used to produce
the appropriate sum and carry bits.
For example the highlighted bits x2,
y2 constitute stage 2 which
generates carry c2 and sum s2 .

s0s1s2s3

c0c1c2c3

s4

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

iii yxp ⊕=

iii yxk +=

iii yxg •=

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

9

Binary Addition

The carry ci generated by a stage ii is given by the equation:

This equation can be simplified to:

The “ai” term in the equation being the “alive” bit.
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented
in CMOS technology. Note that:

Where ki is the “kill” bit defined in the table above.

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

() 11 −− ⋅⊕+⋅=⋅+= iiiiiiiii cyxyxcpgc

iii yxp ⊕=

iii yxk +=

iii yxg •=

() 11 −− ⋅+=⋅++⋅= iiiiiiiii cagcyxyxc

ii ka =

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Binary addition as a prefix sum problem.

()() ()0011 ,,, pgpgpg nnnn K−−

� We define a new operator: “ ° ”
� Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:

� Output is a new vector of pairs:

� Each pair of the output vector is calculated by the
following definition:

),(),(
:

),(),(),(

0000

11

pgPG
Where

PGpgPG iiiiii

=

= −−o

()() ()0011 ,,, PGPGPG nnnn K−−

operationsANDORthebeingwith
ppgpgpgpg yxyxxyyxx

,,

),(),(),(

⋅+

⋅⋅+=o

10

Indicates
that “o” is associative and
amenable to parallel prefix

algorithm

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

11

1973: Kogge-Stone adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

� The Kogge-Stone adder has:
� Low depth
� High node count (implies more area).
� Minimal fan-out of 1 at each node (implies faster performance).

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

12

Summary (2/3)
� A parallel prefix adder can be seen as a 3-stage process:

� There exist various architectures for the carry calculation part.
� Trade-offs in these architectures involve the

� area of the adder
� its depth
� the fan-out of the nodes
� the overall wiring network.

Pre-calculation of Pi, Gi terms

Calculation of the carries.

Simple adder to generate the sum

Parallel Algorithms, Computation
Graphs, and Circuits

• Today’s lecture shows that parallel algorithms, computation graphs, and
circuits represent different approaches to parallel computational thinking

• A parallel algorithm unfolds into a computation graph when executing

• A circuit represents an “unrolled” computation graph in hardware e.g.,
see bitonic sorting network in https://en.wikipedia.org/wiki/Bitonic_sorter

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

And the same principles can be applied to
distributed computing too, e.g., MPI_Scan

1.main(int argc, char **argv){

2. int mype, ierr;

3. ierr = MPI_Init(&argc, &argv);

4. ierr = MPI_Comm_rank(WCOMM, &mype);

5.

6. double l = 0.5;

7. double exp_sum = 0;

8. double exp_pdf_i = 0.0;

9. double exp_cdf_i = 0.0;

10. double DIV_CONST = 2.0;

11. int i;

12.

13. for(i = 0; i < NUMPTS; i++)

14. {

15. if (i == mype)

16. {

17. exp_pdf_i = l*exp(-l * ((double) i) / DIV_CONST);

18. }

19. }

20. //Calculate the cumulative frequency histogram (exp_cdf_i) from exp_pdf_i

21. ierr = MPI_Scan(\

22. &exp_pdf_i, &exp_cdf_i, 1, MPI_DOUBLE, MPI_SUM, WCOMM);

23.

24. for (i = 0; i < NUMPTS; i++)

25. {

26. if (i == mype)

27. {

28. printf("process %d: cumulative sum = %lf\n", \

29. mype, exp_cdf_i);

30. }

31. }

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Announcements & Reminders
• HW5 is now available

• Due April 21st, with automatic extension until May 1st

• We are making an optional quiz available for Unit 10
• Also due April 21st, with automatic extension until May 1st
• Optional, but we will pick the best 9 of your 10 quiz scores
• As always, please post any issues with quiz questions on Piazza

• Two more lectures + grand finale at 3pm on Friday

• April 19th, 1pm: GPU Computing
• April 21st, 1pm: Course review (scope of Exam 2) in class
• April 21st, 3pm: COMP 322 grand finale in DH 3092 (group office

hours time slot, but cake will be served!)

15

