
Comp 311

Functional Programming

Nick Vrvilo, Robert “Corky” Cartwright

Instructors’ Background

• Corky Cartwright, PhD on semantics and verification of

functional programs under David Luckham and John

McCarthy at Stanford, 40 years of research in PL theory

and PL systems (software engineering)

• Nick Vrvilo, fresh PhD (under Vivek Sarkar) and new 2σ

employee focused on PL systems that support efficient

parallel computation.

Course Overview

• An Introduction to Functional Programming

• Tuesdays and Thursdays 4PM-5:15AM

• Office hours:

Corky: 2-4 Wed in DH 3110

Nick: TBA

Course Mechanics

• Course website:

https://wiki.rice.edu/confluence/display/FPSCALA/2017-Fall

• Syllabus, lectures and homework assignments are posted

there

• Lecture topics are subject to change

• Course mailing list: comp311@rice.edu

https://wiki.rice.edu/confluence/display/FPSCALA/2017-Fall
mailto:comp311@rice.edu

Online Course Discussion

• Piazza

https://piazza.com/rice/fall2017/comp311/home

• We will make a best effort to answer questions

posted on this page in a timely manner

• There is no SLA (?)

• Bring your questions to class and office hours

https://piazza.com/rice/fall2017/comp311/home

Course Overview

• No required textbook

• We will draw from a variety of sources

• Coursework consists primarily of weekly homework

assignments

• Make sure you do these!

• Missing even one assignment will significantly

impact your grade

Homework Assignments

• Think of the assignments in this class as short

essays

• Focus as much on style as you would for an essay

• 50% of a homework grade is based on clarity and

style

• 50% on correctness

Homework Assignments

• There will be two weeks between assignment and

due date.

• 7 slip days, no other extensions (not like the real

world where 0 slip days often prevails). No more

than 3 slip days per assignment.

• Aiming for roughly 10 hours of coursework per week.

• Block this time off now and make a priority of

respecting it.

Homework Assignments

• Assignments are published on Thursdays

• Start on assignments early so that you have time to

ask questions at class and at office hours

Homework Assignments

• Assignments will be programming exercises in

Scala

• We will cover the parts of Scala needed for the

assignments in class

Homework Assignments

• You have the option of DrScala and IntelliJ IDEA for

assignments. DrScala is less professional but

better supported.

• Installed on all Rice systems and available for

download from the course website

• We will use turnin on CLEAR for all assignments

• Instructions on the course website

What is Functional

Programming?

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems

turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of

computation

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems

turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of

computation

Turing Machines

• Processor is a finite state machine that loads and stores

memory cells

• Turing coined the term “compute” and introduced the notion

of storage

• Many programs, languages, and computer architectures

are heavily influenced by this model (and its derivates: Von

Neumann, etc.)

Processor Tape

Early Models of Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems

turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of

computation

The Lambda Calculus

• A calculus consists of a set of rules for rewriting symbols

• An attempt to rebuild all of mathematics on the notion of

functions and applications

• There is no mutation in the lambda calculus

• Every program consists solely of applications of functions

to arguments (which are also functions)

• Applications of functions return values (which are also

functions)

What is Functional

Programming?

A style of programming inspired by the Lambda

Calculus as a foundational model of computation.

What is Functional

Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged

What is Functional

Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged
Side Effect

What is Functional

Programming?

• A style of programming that avoids side effects

• All results of a computation are sent as output

BuyCredit Card #
(Digital Book,

Charge Event)

Why Avoid Side

Effects?
• Programs are easier to write: There are fewer interactions

between program components, enabling multiple programmers (or a

single programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read

and understood in isolation

• Programs are easier to test: Less context needs to be built up

before calling a function to test it

• Programs are easier to debug: Problems can be isolated more

easily, and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation

needed to understand a program without mutation is much simpler

Why Avoid Side

Effects?
• Programs are easier to execute in parallel:

Because separate pieces of a computation do not

interact, it is easy to compute them on separate

processors

• This is an increasingly important consideration in

the era of multicore chips, big data, and distributing

computing

• This advantage undermines an often cited

argument for mutation (efficiency)

What is Functional

Programming?

• A style of programming that emphasizes functions

as the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other

functions

• Functions are returned as values of applications

Why Emphasize

Functions?
• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most

straightforward way to abide by DRY

• Returning functions as values is also important

for DRY

Why Emphasize

Functions?

• Functions allow us to concisely package

computations and move them from one control point

to another

• Aids us with implementing and reasoning about

parallel and distributed programming (yet again)

A Word on Object-Oriented

Programming

• There is no tension between functional and object-

oriented programming. In fact, OOP can be cast as

an enrichment of FP. See
https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another

• Scala was designed to integrate both styles of

programming

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

A New Paradigm

• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at

first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us

to explore advanced topics

A New Paradigm

• We will re-examine many things we’ve (partially)

learned

• Often in life, the way forward is to rethink our

assumptions

• Later, we can integrate what we’ve learned into

our larger body of knowledge

Our First Exposure to

Computation:

Arithmetic

4 + 5 = 9

4 + 5 ↦
9

expressions are reduced to values

Critical Intuition*

● Reduction rules (although typically written using

conventional [concrete] syntax) work on abstract

syntax trees (ASTs).

● Every expression in conventional (concrete)

syntax corresponds to an abstract syntax tree.

● Example: (4 + 1) × (5 + 3)

×

+ +

4 1 5 3

Critical Intuition II*
● Tree structure is typically encoded in concrete

syntax using parentheses

● Example:

○ normal function application notation, e.g.,

prod(sum(3,1), sum(5,3))

● Expressions with parentheses are hard for

humans to read so common mathematical

notation heavily relies on infix notation for binary

operators and precedence conventions, e.g.,

2 + 3 × 6 vs. 2 × 3 + 6

● Thinking about syntax in terms of ASTs

simplifies reduction rules

Expressions are Reduced to

Values
• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2

Expressions are Reduced to

Values

To reduce an operator applied to expressions, first

reduce the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40

Expressions are Reduced to

Values

A precedence is defined on operators to help us

decide what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12

New Operations Often

Introduce New Types of

Values
• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i

Old Operations on New Types of Values

Often Introduce Yet More New Types of

Values

1 + i

