
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

Homework 0
• Please follow these instructions for checking out your turnin repository as soon as

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using
turnin

• Please bring problems to our attention as soon as possible

2

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

What is functional
programming?

(continued)

3

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between

program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read and
understood in isolation

• Programs are easier to test: Less context needs to be built up before
calling a function to test it

• Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

4

Why Avoid Side Effects?

• Programs are easier to execute in parallel: Because
separate pieces of a computation do not interact, it is
easy to compute them on separate processors

• This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

• This advantage undermines an often cited argument for
mutation (efficiency)

5

What is Functional
Programming?

• A style of programming that emphasizes functions as
the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other functions

• Functions are returned as values of applications

6

Why Emphasize Functions?

• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important for
DRY

7

Why Emphasize Functions?

• Functions allow us to concisely package computations
and move them from one control point to another

• Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

8

A Word on Object-Oriented
Programming

• There is no tension between functional and object-
oriented programming. In fact, OOP can be cast as an
enrichment of FP.

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another

• Scala was designed to integrate both styles of
programming

9

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

A New Paradigm

• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us to
explore advanced topics

10

A New Paradigm

• We will re-examine many things we’ve (partially)
learned

• Often in life, the way forward is to rethink our
assumptions

• Later, we can integrate what we’ve learned into our
larger body of knowledge

11

Our first exposure
to computation:

Arithmetic

12

Our First Exposure to Computation:

Arithmetic

13

4 + 5 = 9

14

4 + 5 ↦ 9

expressions are reduced to values

15

Critical Intuition
● Reduction rules (although typically written using

conventional [concrete] syntax) work on abstract
syntax trees (ASTs).

● Every expression in conventional (concrete) syntax
corresponds to an abstract syntax tree.

● Example: (4 + 1) × (5 + 3)

×

+ +

4 1 5 3
16

Critical Intuition II
• Tree structure is typically encoded in concrete

syntax using parentheses
• Example:

normal function application notation, e.g.,
prod(sum(3,1), sum(5,3))

• Expressions with parentheses are hard for humans
to read so common mathematical notation heavily
relies on infix notation for binary operators and
precedence conventions, e.g.,
2 + 3 × 6 vs. 2 × 3 + 6

• Thinking about syntax in terms of ASTs simplifies
reduction rules

17

Expressions are Reduced to
Values

• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2

18

Expressions are Reduced to
Values

To reduce an operator applied to expressions, first reduce
the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40

19

Expressions are Reduced to
Values

A precedence is defined on operators to help us decide
what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12

20

New Operations Often Introduce
New Types of Values

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i

21

Old Operations on New Types of Values
Often Introduce Yet More New Types of

Values

1 + i

22

So, what are types?

23

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

24

Values Have
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more

25

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

26

Expressions Have
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Value Type

27

Rules for Static Types

• If an expression is a value, its static type is its value type

5: 𝐍
• With each operator, there are “if-then” rules stating the

required static types of the operands, and the static type of
the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

28

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

Not quite.

29

Expressions Have
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…

30

Expressions Have
Static Types

16 / 0: 𝐐 ↦ ?

31

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion that
either an expression reduces to a value with a particular

value type, or one of a well-defined set of exceptional
events occurs.

32

Why Static Types?

• Using our rules, we can determine whether an
expression has a static type.

• If it does, we say the expression is well-typed, and we
know that proceeding with our computation is type
safe:

Either our computation will finish with a value of the
determined value type, or one of a well-defined
exceptional events will occur.

33

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What else?

34

What are the Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?

35

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• We run out of some finite resource

36

Our second exposure
to computation:

Algebra

37

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2

38

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11

39

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding argument

40

Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

41

What About Types?

• Eventually, we learn that our functions need to include
rules indicating the required types of their arguments,
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙

42

Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?

43

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).

44

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.

45

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?

46

The Substitution Rule Allows for
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…

47

The Substitution Rule Allows for
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…

48

But We Need at Least Limited Recursion to
Define Common Algebraic Constructs

{ 1 if n = 0

n (n –1)! if n > 0
n ! =

! :
𝐍→𝐍

49

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)

50

Our third exposure
to computation:

Core Scala

51

Core Scala

• We will continue to use algebra as our model of
computation

• We will switch to Scala syntax

• We will introduce new value types

52

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”

53

Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

e + eʹ e - eʹ e * eʹ e / eʹ

• For each operator:

• If both arguments to an application of an operator are of
type Int then the application is of type Int

• If both arguments to an application of an operator are of
type Double then the application is of type Double

54

Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == eʹ e <= eʹ e >= eʹ e != e'

e > eʹ e < eʹ

• For each operator:

• If both arguments to an application of an operator are of type
Int then the application is of type Boolean

• If both arguments to an application of an operator are of type
Double then the application is of type Boolean

55

Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:

e & eʹ e | eʹ

• In both cases:

• If both arguments to an application are of type
Boolean then the application is of type Boolean

56

More Primitive Operators on
Booleans in Core Scala

Negation:

! e

• If the argument to an application is of type Boolean
then the application is of type Boolean

57

Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ

• If the first argument is of type Boolean and the second
and third argument are of the same type 𝑇 then the
application is of type 𝑇

58

Primitive Operators on Strings
in Core Scala

String Concatenation:

e + eʹ

• If both arguments are of type String then the
application is of type String

59

An Example Function
Definition in Core Scala

def square(x: Double) = x * x

60

Syntax for Defining Functions

• If there is no recursion, we may elide the return type:

def fnName(arg0: type0, …, argk: typek): returnType =

expr

61

def fnName(arg0: type0, …, argk: typek) =

expr

The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0

62

The Nature of Ints

63

Fixed Size Ints

• Unlike the integers we might write on a sheet of paper,
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1

64

Fixing the Size of Numbers
Has Many Benefits

• The time needed to compute the application of an
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to
store another.

65

But We Need to Concern
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648

66

The Moral of Computing with
Ints

• If possible, determine the range of potential results of a
computation

• Ensure that this range is no larger than the range of
representable values of type Int

• Otherwise, include in your computation a check for
overflow

67

The Nature of Doubles

68

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

69

Scientific Notation

6.022 × 1023

mantissa exponent

70

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but
less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

71

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed in
the form:

± m 2e

72

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

73

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

74

The Nature of Doubles

75

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

76

Scientific Notation

6.022 × 10 23

mantissa

exponent

77

base

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but
less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

78

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed in
the form:

± m×2 e

79

Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971

80

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

81

Representations of Doubles

• Many quantities have more than one representation in
this format:

1024 × 2500

512 × 2501

82

Distances Between Doubles

• The distance between adjacent values of type Double is
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away
from zero

83

Operations and Rounding

• Arithmetic operations round to the closest
representable value

• Ties are broken by choosing the value with the
smaller absolute value

84

Overflow with Doubles

• Computations on Doubles that result in values larger
than the largest finite Double are represented with
special values:

Double.PositiveInfinity

Double.NegativeInfinity

85

Underflow with Doubles

• Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero Double
are represented with special values:

0.0 -0.0

86

Division By Zero

• Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

87

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity

88

Division By Zero

• Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

89

