Comp 311 Functional Programming

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

Homework 0

- Please follow these instructions for checking out your turnin repository as soon as possible:
 - Follow the instructions under <u>Homework Submission Guide</u> at the <u>Course Website</u>
 - Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
 Hello, world!
 - This submission is not for credit
 - We will let you know if we have not received your submission
 - You will be responsible for successfully submitting your hw_1 assignment using turnin
 - · Please bring problems to our attention as soon as possible

What is functional programming? (continued)

Why Avoid Side Effects?

- Programs are easier to write: There are fewer interactions between program components, enabling multiple programmers (or a single programmer on multiple days) to work together more easily
- Programs are easier to read: Pieces of a program can be read and understood in isolation
- Programs are easier to test: Less context needs to be built up before calling a function to test it
- Programs are easier to debug: Problems can be isolated more easily, and behavior is inherently deterministic
- Programs are easier to reason about: The model of computation needed to understand a program without mutation is much simpler

Why Avoid Side Effects?

- Programs are easier to execute in parallel: Because separate pieces of a computation do not interact, it is easy to compute them on separate processors
- This is an increasingly important consideration in the era of multicore chips, big data, and distributing computing
 - This advantage undermines an often cited argument for mutation (efficiency)

What is Functional Programming?

- A style of programming that emphasizes functions as the basis of computation
 - Functions are applied to arguments
 - Functions are passed as arguments to other functions
 - Functions are returned as values of applications

Why Emphasize Functions?

- Functions allow us to factor out common code
 - DRY: Don't Repeat Yourself
 - Why is this important?
 - Passing functions as arguments is often the most straightforward way to abide by DRY
 - Returning functions as values is also important for DRY

Why Emphasize Functions?

- Functions allow us to concisely package computations and move them from one control point to another
 - Aids us with implementing and reasoning about parallel and distributed programming (yet again)

A Word on Object-Oriented Programming

 There is no tension between functional and objectoriented programming. In fact, OOP can be cast as an enrichment of FP.

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

- In many ways, they complement one another
- Scala was designed to integrate both styles of programming

A New Paradigm

- Set aside what you've learned about programming
- The style we will practice might seem unfamiliar at first
- Initially, the material will seem quite basic
 - We will build a solid foundation that will enable us to explore advanced topics

A New Paradigm

- We will re-examine many things we've (partially) learned
 - Often in life, the way forward is to rethink our assumptions
 - Later, we can integrate what we've learned into our larger body of knowledge

Our first exposure to computation: Arithmetic

Our First Exposure to Computation:

Arithmetic

$$4 + 5 = 9$$

$$4 + 5 \longrightarrow 9$$

expressions are reduced to values

Critical Intuition

- Reduction rules (although typically written using conventional [concrete] syntax) work on abstract syntax trees (ASTs).
- Every expression in conventional (concrete) syntax corresponds to an abstract syntax tree.
- Example: $(4 + 1) \times (5 + 3)$

Critical Intuition II

- Tree structure is typically encoded in concrete syntax using parentheses
- Example: normal function application notation, e.g., prod(sum(3,1), sum(5,3))
- Expressions with parentheses are hard for humans to read so common mathematical notation heavily relies on infix notation for binary operators and precedence conventions, *e.g.*,

$$2 + 3 \times 6$$
 vs. $2 \times 3 + 6$

Thinking about syntax in terms of ASTs simplifies reduction rules

Expressions are Reduced to Values

- Rules for a fixed set of operators:
 - $4+5 \mapsto 9$
 - $4-5 \mapsto -1$
 - $4 \times 5 \mapsto 20$
 - $9/3 \mapsto 3$
 - $4^2 \mapsto 16$
 - $\sqrt{4} \mapsto 2$

Expressions are Reduced to Values

To reduce an operator applied to expressions, first reduce the subexpressions, left to right:

$$(4+1)\times(5+3)\mapsto$$

$$5 \times (5 + 3) \mapsto$$

$$5 \times 8 \mapsto$$

40

Expressions are Reduced to Values

A precedence is defined on operators to help us decide what to reduce next:

$$4 + 1 \times 5 + 3 \longrightarrow$$

$$4 + 5 + 3 \mapsto$$

$$9 + 3 \mapsto$$

12

New Operations Often Introduce New Types of Values

•
$$4+5 \mapsto 9$$

•
$$4-5 \mapsto -1$$

•
$$4 \times 5 \mapsto 20$$

•
$$4/5 \mapsto 0.8$$

•
$$4^2 \mapsto 16$$

•
$$\sqrt{-1} \mapsto i$$

Old Operations on New Types of Values
Often Introduce Yet More New Types of
Values

$$1 + i$$

So, what are types?

Values Have Value Types

Definition: A *value type* is a *name* for a collection of values with common properties.

Values Have Value Types

- Examples of value types:
 - Natural numbers
 - Integers
 - Floating point numbers
 - And many more

Definition (Attempt 1): A *static type* is an assertion that an expression reduces to a value with a particular *value type*.

$$4 + 5: \mathbb{N} \mapsto 9: \mathbb{N}$$
Static Type Value Type

Rules for Static Types

• If an expression is a value, its static type is its value type

5: N

• With each operator, there are "if-then" rules stating the required static types of the operands, and the static type of the application:

Integer Addition: If the operands to + are of type N then the application is of type N

Definition (Attempt 1): A *static type* is an *assertion* that an expression reduces to a value with a particular *value type*.

Not quite.

16 / 20: $Q \mapsto 0.8$: Q

So far, so good...

$$16 / 0: \mathbb{Q} \mapsto ?$$

Definition (Attempt 2): A *static type* is an *assertion* that either an expression reduces to a value with a particular *value type*, or one of a <u>well-defined</u> set of exceptional events occurs.

Why Static Types?

- Using our rules, we can determine whether an expression has a static type.
- If it does, we say the expression is well-typed, and we know that proceeding with our computation is type safe:

Either our computation will finish with a value of the determined value type, or one of a well-defined exceptional events will occur.

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- What else?

What are the Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- What if we run out of paper?
 - Or pencil lead? Or erasers?
- What if we run out of time?

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- We run out of some finite resource

Our second exposure to computation: Algebra

Now, We Learn How to Define Our Own Operators (a.k.a. functions)

$$f(x) = 2x + 1$$

$$f(x, y) = x^2 + y^2$$

And We Learn How to Compute With Them

$$f(x) = 2x + 1$$

$$f(3 + 2) \mapsto$$

$$f(5) \mapsto$$

$$(2 \times 5) + 1 \mapsto$$

$$10 + 1 \mapsto$$

The Substitution Rule of Computation

- To reduce an application of a function to a set of arguments:
 - Reduce the arguments, left to right
 - Reduce the body of the function, with each parameter replaced by the corresponding argument

Using the Substitution Rule

$$f(x, y) = x^2 + y^2$$

$$f(4 - 5, 3 + 1) \mapsto$$

$$f(-1, 3 + 1) \mapsto$$

$$f(-1, 4) \mapsto$$

$$-1^2 + 4^2 \mapsto$$

$$1 + 16 \mapsto$$

What About Types?

- Eventually, we learn that our functions need to include rules indicating the required types of their arguments, and the types of applications
- · You might have seen notation like this in a math class:

$$f: Z \longrightarrow Z$$

Typing Rules for Functions

$$f: Z \longrightarrow Z$$

What does this rule mean?

Typing Rules for Functions

$$f: \mathbb{Z} \longrightarrow \mathbb{Z}$$

We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type Z and produces values with value type Z

(or one of a well-defined set of exceptional events occurs).

Typing Rules for Functions

$$f: Z \longrightarrow Z$$

We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type Z then the application expression has static type Z.

What are The Exceptional Events in Algebra?

- A "division by zero" error
- We run out of some finite resource
- What else?

The Substitution Rule Allows for Computations that Never Finish

$$f: \mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z}$$

$$f(x, y) = f(x, y)$$

$$f(4 - 5, 3 + 1) \mapsto$$

$$f(-1, 3 + 1) \mapsto$$

$$f(-1, 4) \mapsto$$

$$f(-1, 4) \mapsto$$

• • •

The Substitution Rule Allows for Computations that Keep Getting Larger

$$f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$$

$$f(x, y) = f(f(x, y), f(x, y))$$

$$f(4 - 5, 3 + 1) \mapsto$$

$$f(-1, 3 + 1) \mapsto$$

$$f(-1, 4) \mapsto$$

$$f(f(-1, 4), f(-1, 4)) \mapsto$$

$$f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) \mapsto$$

• • •

But We Need at Least Limited Recursion to Define Common Algebraic Constructs

!:
$$\mathbf{N} \to \mathbf{N}$$

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n(n-1)! & \text{if } n > 0 \end{cases}$$

What are The Exceptional Events in Algebra?

- A "division by zero" error
- We run out of some finite resource
- The computation never stops (unbounded time)
- The computation keeps getting larger (unbounded space)

Our third exposure to computation: Core Scala

Core Scala

- We will continue to use algebra as our model of computation
- We will switch to Scala syntax
- We will introduce new value types

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: "Hello, world!"

Primitive Operators on Ints and Doubles in Core Scala

Algebraic operators:

$$e + e' \quad e - e' \quad e * e' \quad e / e'$$

- For each operator:
 - If both arguments to an application of an operator are of type Int then the application is of type Int
 - If both arguments to an application of an operator are of type Double then the application is of type Double

Primitive Operators on Ints and Doubles in Core Scala

Comparison operators:

$$e == e'$$
 $e <= e'$ $e >= e'$ $e != e'$
 $e > e'$

- For each operator:
 - If both arguments to an application of an operator are of type
 Int then the application is of type Boolean
 - If both arguments to an application of an operator are of type
 Double then the application is of type Boolean

Some Primitive Operators on Booleans in Core Scala

Conjunction, Disjunction:

- In both cases:
 - If both arguments to an application are of type
 Boolean then the application is of type Boolean

More Primitive Operators on Booleans in Core Scala

Negation:

!e

 If the argument to an application is of type Boolean then the application is of type Boolean

Yet More Primitive Operators on Booleans in Core Scala

Conditional Expressions:

 If the first argument is of type Boolean and the second and third argument are of the same type *T* then the application is of type *T*

Primitive Operators on Strings in Core Scala

String Concatenation:

$$e + e'$$

If both arguments are of type String then the application is of type String

An Example Function Definition in Core Scala

```
def square(x: Double) = x * x
```

Syntax for Defining Functions

```
def fnName(arg<sub>0</sub>: type<sub>0</sub>, ..., arg<sub>k</sub>: type<sub>k</sub>): returnType = expr
```

If there is no recursion, we may elide the return type:

```
def fnName(arg<sub>0</sub>: type<sub>0</sub>, ..., arg<sub>k</sub>: type<sub>k</sub>) = expr
```

The Substitution Rule Works as Before

```
def square(x: Double) = x * x

    square(2.0 * 3.0) →
        square(6.0) →
        6.0 * 6.0 →
        36.0
```

The Nature of Ints

Fixed Size Ints

- Unlike the integers we might write on a sheet of paper, the values of type Int are of a fixed size.
- For every n: Int,

$$-2^{31} \le n \le 2^{31} - 1$$

Fixing the Size of Numbers Has Many Benefits

- The time needed to compute the application of an operation on two numbers is bounded.
- The space needed to store a number is bounded.
- We can easily reuse the space used for one number to store another.

But We Need to Concern Ourselves with Overflow

• If we compute a value larger than 2^{31} – 1, our representation will "wrap around" (i.e., overflow):

 $2147483647 + 1 \mapsto -2147483648$

The Moral of Computing with Ints

- If possible, determine the range of potential results of a computation
 - Ensure that this range is no larger than the range of representable values of type Int
- Otherwise, include in your computation a check for overflow

The Nature of Doubles

Scientific Notation

- Numeric values in scientific computations can span enormous ranges, from the very large to the very small
- At the same time, scientific measurements are of limited precision
- "Scientific notation" was devised in order to efficiently represent approximate values that span a large range

Scientific Notation

Scientific Notation and Efficient Computation

- We normalize the mantissa so that its value is at least 1 but less than 10
- If we
 - Set the number of digits in the mantissa to a fixed precision, and
 - Set the number of digits in the exponent to a fixed precision
- Then all numbers in our notation are of a fixed size

Doubles

- Values of type Double are stored as with fixed sized numbers in scientific notation, but with a few differences:
 - Finite, nonzero numeric values can be expressed in the form:

$$\pm m 2^e$$

$$\pm m 2^e$$

- $1 \le m \le 2^{53}-1$
- $-2^{10}-53+3 \le e \le 2^{10}-53$

$$\pm m 2^e$$

- $1 \le m \le 2^{53}-1$
- $-2^{10}-53+3 \le e \le 2^{10}-53$
- $-1074 \le e \le 971$

The Nature of Doubles

Scientific Notation

- Numeric values in scientific computations can span enormous ranges, from the very large to the very small
- At the same time, scientific measurements are of limited precision
- "Scientific notation" was devised in order to efficiently represent approximate values that span a large range

Scientific Notation

$$6.022 \times 10^{23}$$
mantissa base

Scientific Notation and Efficient Computation

- We normalize the mantissa so that its value is at least 1 but less than 10
- If we
 - Set the number of digits in the mantissa to a fixed precision, and
 - Set the number of digits in the exponent to a fixed precision
- Then all numbers in our notation are of a fixed size

- Values of type Double are stored as with fixed sized numbers in scientific notation, but with a few differences:
 - Finite, nonzero numeric values can be expressed in the form:

$$\pm m \times 2^e$$

$$\pm m \times 2^e$$

- $1 \le m \le 2^{53} 1$
- $-1022 \le e \le 971$

For more details, you can read about double-precision binary representation: https://en.wikipedia.org/wiki/Double-precision_floating-point_format

$$\pm m 2^e$$

- $1 \le m \le 2^{53}-1$
- $-2^{10}-53+3 \le e \le 2^{10}-53$
- $-1074 \le e \le 971$

Representations of Doubles

 Many quantities have more than one representation in this format:

$$1024 \times 2^{500}$$

$$512 \times 2^{501}$$

Distances Between Doubles

- The distance between adjacent values of type Double is not constant
 - The values are most dense near zero
 - They grow sparser exponentially as one moves away from zero

Operations and Rounding

- Arithmetic operations round to the closest representable value
 - Ties are broken by choosing the value with the smaller absolute value

Overflow with Doubles

 Computations on Doubles that result in values larger than the largest finite Double are represented with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

 Computations on Doubles that result in values with magnitudes smaller than the smallest non-zero Double are represented with special values:

0.0 - 0.0

Division By Zero

Division of a non-zero finite value by a zero value results in an infinite value:

 $1.0 / 0.0 \rightarrow Double.PositiveInfinity$

 $1.0 / -0.0 \rightarrow Double.NegativeInfinity$

Division By Zero

As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 → Double.PositiveInfinity

Division By Zero

 Division of a zero value by a zero value results in another special value NaN (for "Not a Number"):

 $0.0 / 0.0 \rightarrow Double.NaN$

 $-0.0 / 0.0 \mapsto Double.NaN$