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Homework 0
• Please follow these instructions for checking out your turnin repository as soon as 

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text, 
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using 
turnin

• Please bring problems to our attention as soon as possible
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https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311


What is functional 
programming?

(continued)
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Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between 

program components, enabling multiple programmers (or a single 
programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read and 
understood in isolation

• Programs are easier to test: Less context needs to be built up before 
calling a function to test it

• Programs are easier to debug: Problems can be isolated more easily, 
and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation 
needed to understand a program without mutation is much simpler
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Why Avoid Side Effects?

• Programs are easier to execute in parallel: Because 
separate pieces of a computation do not interact, it is 
easy to compute them on separate processors

• This is an increasingly important consideration in the 
era of multicore chips, big data, and distributing 
computing

• This advantage undermines an often cited argument for 
mutation (efficiency)
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What is Functional 
Programming?

• A style of programming that emphasizes functions as 
the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other functions

• Functions are returned as values of applications
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Why Emphasize Functions?

• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most 
straightforward way to abide by DRY

• Returning functions as values is also important for 
DRY
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Why Emphasize Functions?

• Functions allow us to concisely package computations 
and move them from one control point to another

• Aids us with implementing and reasoning about 
parallel and distributed programming (yet again)
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A Word on Object-Oriented 
Programming

• There is no tension between functional and object-
oriented programming.  In fact, OOP can be cast as an 
enrichment of FP.

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another

• Scala was designed to integrate both styles of 
programming
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https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf


A New Paradigm

• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us to 
explore advanced topics
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A New Paradigm

• We will re-examine many things we’ve (partially) 
learned

• Often in life, the way forward is to rethink our 
assumptions

• Later, we can integrate what we’ve learned into our 
larger body of knowledge
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Our first exposure 
to computation: 

Arithmetic
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Our First Exposure to Computation: 

Arithmetic
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4 + 5 = 9
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4 + 5 ↦ 9

expressions are reduced to values
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Critical Intuition
● Reduction rules (although typically written using 

conventional [concrete] syntax) work on abstract 
syntax trees (ASTs).

● Every expression in conventional (concrete) syntax 
corresponds to an abstract syntax tree.

● Example:          (4 + 1) × (5 + 3)

×

+ +

4 1 5 3
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Critical Intuition II
• Tree structure is typically encoded in concrete 

syntax using parentheses
• Example: 

normal function application notation, e.g.,  
prod(sum(3,1), sum(5,3))

• Expressions with parentheses are hard for humans 
to read so common mathematical notation heavily 
relies on infix notation for binary operators and 
precedence conventions, e.g., 
2 + 3 × 6  vs.  2 × 3 + 6

• Thinking about syntax in terms of ASTs simplifies 
reduction rules
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Expressions are Reduced to 
Values

• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2
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Expressions are Reduced to 
Values

To reduce an operator applied to expressions, first reduce 
the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40
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Expressions are Reduced to 
Values

A precedence is defined on operators to help us decide 
what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12
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New Operations Often Introduce 
New Types of Values

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i
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Old Operations on New Types of Values 
Often Introduce Yet More New Types of 

Values

1 + i
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So, what are types?
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Values Have 
Value Types

Definition: A value type is a name for a collection of 
values with common properties.
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Values Have 
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more
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Expressions Have 
Static Types

Definition (Attempt 1): A static type is an assertion that 
an expression reduces to a value with a particular value 

type.
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Expressions Have 
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Value Type
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Rules for Static Types

• If an expression is a value, its static type is its value type

5: 𝐍
• With each operator, there are “if-then” rules stating the 

required static types of the operands, and the static type of 
the application:

Integer Addition: If the operands to + are of type N 
then the application is of type N
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Expressions Have 
Static Types

Definition (Attempt 1): A static type is an assertion that 
an expression reduces to a value with a particular value 

type.

Not quite.
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Expressions Have 
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…
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Expressions Have 
Static Types

16 / 0: 𝐐 ↦ ?
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Expressions Have 
Static Types

Definition (Attempt 2): A static type is an assertion that 
either an expression reduces to a value with a particular 

value type, or one of a well-defined set of exceptional 
events occurs.
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Why Static Types?

• Using our rules, we can determine whether an 
expression has a static type.

• If it does, we say the expression is well-typed, and we 
know that proceeding with our computation is type 
safe:

Either our computation will finish with a value of the 
determined value type, or one of a well-defined 
exceptional events will occur.

33



What Constitutes the Set of Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error

• What else?

34



What are the Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?
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What Constitutes the Set of Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error

• We run out of some finite resource
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Our second exposure 
to computation: 

Algebra
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Now, We Learn How to Define Our 
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2
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And We Learn How to 
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11
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The Substitution Rule of 
Computation

• To reduce an application of a function to a set of 
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each 
parameter replaced by the corresponding argument
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Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17
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What About Types?

• Eventually, we learn that our functions need to include 
rules indicating the required types of their arguments, 
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙
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Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?
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Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and 
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).
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Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.
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What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?
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The Substitution Rule Allows for 
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…
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The Substitution Rule Allows for 
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…
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But We Need at Least Limited Recursion to 
Define Common Algebraic Constructs

{ 1                  if n = 0

n (n –1)!         if n > 0
n ! =

! : 
𝐍→𝐍

49



What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)
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Our third exposure 
to computation:

Core Scala
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Core Scala

• We will continue to use algebra as our model of 
computation

• We will switch to Scala syntax

• We will introduce new value types 
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Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”
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Primitive Operators on Ints 
and Doubles in Core Scala

Algebraic operators:

e + eʹ     e - eʹ     e * eʹ     e / eʹ

• For each operator:

• If both arguments to an application of an operator are of 
type Int then the application is of type Int

• If both arguments to an application of an operator are of 
type Double then the application is of type Double
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Primitive Operators on Ints 
and Doubles in Core Scala

Comparison operators:

e == eʹ     e <= eʹ     e >= eʹ     e != e'

e > eʹ      e < eʹ

• For each operator:

• If both arguments to an application of an operator are of type 
Int then the application is of type Boolean

• If both arguments to an application of an operator are of type 
Double then the application is of type Boolean
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Some Primitive Operators on 
Booleans in Core Scala

Conjunction, Disjunction:   

e & eʹ     e | eʹ    

• In both cases:

• If both arguments to an application are of type 
Boolean then the application is of type Boolean
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More Primitive Operators on 
Booleans in Core Scala

Negation:     

! e

• If the argument to an application is of type Boolean 
then the application is of type Boolean
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Yet More Primitive Operators 
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ  

• If the first argument is of type Boolean and the second 
and third argument are of the same type 𝑇 then the 
application is of type 𝑇
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Primitive Operators on Strings 
in Core Scala

String Concatenation:

e + eʹ  

• If both arguments are of type String then the 
application is of type String
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An Example Function 
Definition in Core Scala

def square(x: Double) = x * x
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Syntax for Defining Functions

• If there is no recursion, we may elide the return type:

def fnName(arg0: type0, …, argk: typek): returnType =

expr
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def fnName(arg0: type0, …, argk: typek) =

expr



The Substitution Rule Works 
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0
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The Nature of Ints
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Fixed Size Ints

• Unlike the integers we might write on a sheet of paper, 
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1
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Fixing the Size of Numbers 
Has Many Benefits

• The time needed to compute the application of an 
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to 
store another.
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But We Need to Concern 
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our 
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648 
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The Moral of Computing with 
Ints

• If possible, determine the range of potential results of a 
computation

• Ensure that this range is no larger than the range of 
representable values of type Int

• Otherwise, include in your computation a check for 
overflow
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The Nature of Doubles
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Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to efficiently 
represent approximate values that span a large range
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Scientific Notation

6.022 × 1023

mantissa exponent
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Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but 
less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size
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Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed in 
the form:

± m 2e
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Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53
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Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971
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The Nature of Doubles
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Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to efficiently 
represent approximate values that span a large range
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Scientific Notation

6.022 × 10 23

mantissa

exponent
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Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but 
less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size
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Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed in 
the form:

± m×2 e
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Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971
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For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

https://en.wikipedia.org/wiki/Double-precision_floating-point_format


Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971
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Representations of Doubles

• Many quantities have more than one representation in 
this format:

1024 × 2500

512 × 2501

82



Distances Between Doubles

• The distance between adjacent values of type Double is 
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away 
from zero
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Operations and Rounding

• Arithmetic operations round to the closest 
representable value

• Ties are broken by choosing the value with the 
smaller absolute value

84



Overflow with Doubles

• Computations on Doubles that result in values larger 
than the largest finite Double are represented with 
special values:

Double.PositiveInfinity

Double.NegativeInfinity
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Underflow with Doubles

• Computations on Doubles that result in values with 
magnitudes smaller than the smallest non-zero Double 
are represented with special values:

0.0        -0.0
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Division By Zero

• Division of a non-zero finite value by a zero value 
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity
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Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity
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Division By Zero

• Division of a zero value by a zero value results in 
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN
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