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The Substitution Rule of 
Computation

• To reduce an application of a function to a set of 
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each 
parameter replaced by the corresponding argument
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Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17
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What About Types?

• Eventually, we learn that our functions need to include 
rules indicating the required types of their arguments, 
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙
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Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?
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Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and 
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).
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Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.
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What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?
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The Substitution Rule Allows for 
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…
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The Substitution Rule Allows for 
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…
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But We Need at Least Limited Recursion to 
Define Common Algebraic Constructs

{ 1                  if n = 0

n (n –1)!         if n > 0
n ! =

! : 
𝐍→𝐍
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What are The Exceptional 
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)
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Our third exposure 
to computation:

Core Scala
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Core Scala

• We will continue to use algebra as our model of 
computation

• We will switch to Scala syntax

• We will introduce new value types 
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Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”
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Primitive Operators on Ints 
and Doubles in Core Scala

Algebraic operators:

e + eʹ     e - eʹ     e * eʹ     e / eʹ

• For each operator:

• If both arguments to an application of an operator are of 
type Int then the application is of type Int

• If both arguments to an application of an operator are of 
type Double then the application is of type Double
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Primitive Operators on Ints 
and Doubles in Core Scala

Comparison operators:

e == eʹ     e <= eʹ     e >= eʹ     e != e'

e > eʹ      e < eʹ

• For each operator:

• If both arguments to an application of an operator are of type 
Int then the application is of type Boolean

• If both arguments to an application of an operator are of type 
Double then the application is of type Boolean
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Some Primitive Operators on 
Booleans in Core Scala

Conjunction, Disjunction:   

e & eʹ     e | eʹ    

• In both cases:

• If both arguments to an application are of type 
Boolean then the application is of type Boolean
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More Primitive Operators on 
Booleans in Core Scala

Negation:     

! e

• If the argument to an application is of type Boolean 
then the application is of type Boolean
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Yet More Primitive Operators 
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ  

• If the first argument is of type Boolean and the second 
and third argument are of the same type 𝑇 then the 
application is of type 𝑇
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Primitive Operators on Strings 
in Core Scala

String Concatenation:

e + eʹ  

• If both arguments are of type String then the 
application is of type String

21



An Example Function 
Definition in Core Scala

def square(x: Double) = x * x
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Syntax for Defining Functions

• If there is no recursion, we may elide the return type:

def fnName(arg0: type0, …, argk: typek): returnType =

expr

def fnName(arg0: type0, …, argk: typek) =

expr
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The Substitution Rule Works 
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0
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The Nature of Ints
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Fixed Size Ints

• Unlike the integers we might write on a sheet of paper, 
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1
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Fixing the Size of Numbers 
Has Many Benefits

• The time needed to compute the application of an 
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to 
store another.
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But We Need to Concern 
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our 
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648 
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The Moral of Computing with 
Ints

• If possible, determine the range of potential results of a 
computation

• Ensure that this range is no larger than the range of 
representable values of type Int

• Otherwise, include in your computation a check for 
overflow
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The Nature of Doubles
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Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to efficiently 
represent approximate values that span a large range
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Scientific Notation

6.022 × 1023

mantissa exponent
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Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but 
less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size
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Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed in 
the form:

± m 2e
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Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53
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Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971
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The Nature of Doubles
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Scientific Notation

• Numeric values in scientific computations can span 
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of 
limited precision

• “Scientific notation” was devised in order to efficiently 
represent approximate values that span a large range
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Scientific Notation

6.022 × 10 23

mantissa

exponent

base
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Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but 
less than 10 

• If we

• Set the number of digits in the mantissa to a fixed 
precision, and

• Set the number of digits in the exponent to a fixed 
precision

• Then all numbers in our notation are of a fixed size
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Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences:

• Finite, nonzero numeric values can be expressed in 
the form:

± m×2 e
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Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
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Representations of Doubles

• Many quantities have more than one representation in 
this format:

1024 × 2500

512 × 2501
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Distances Between Doubles

• The distance between adjacent values of type Double is 
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away 
from zero
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Operations and Rounding

• Arithmetic operations round to the closest 
representable value

• Ties are broken by choosing the value with the 
smaller absolute value
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Overflow with Doubles

• Computations on Doubles that result in values larger 
than the largest finite Double are represented with 
special values:

Double.PositiveInfinity

Double.NegativeInfinity
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Underflow with Doubles

• Computations on Doubles that result in values with 
magnitudes smaller than the smallest non-zero Double 
are represented with special values:

0.0        -0.0
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Division By Zero

• Division of a non-zero finite value by a zero value 
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity
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Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity
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Division By Zero

• Division of a zero value by a zero value results in 
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

50



Doubles Break Common 
Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 ↦  
0.6000000000000001

0.1 + (0.2 + 0.3) ↦                 
0.6
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Doubles Break Common 
Algebraic Properties

• Equality is not reflexive:

Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦ 
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦        
30.0
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Morals of Floating Point 
Computation

• Avoid floating point computation whenever you need to 
compute precise numeric values (such as monetary 
values)

• Use floating point values only when calculating with 
inexact measurements over a range larger than can be 
represented with precise arithmetic
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Morals of Floating Point 
Computation

• Try to bound the margin of error in your calculation 

• Don’t test for equality directly

• Instead of writing:

x == y

• Write: 

abs(x - y) <= tolerance
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Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

What’s wrong here?

abs(-0.0) ↦

if (-0.0 >= 0) -0.0 else -(-0.0) ↦

if (true) -0.0 else -(-0.0) ↦

-0.0
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Defining Absolute Value

def abs(x: Double) = if (x > 0) x else 0.0 - x

Does it work now?

abs(-0.0) ↦

if (-0.0 > 0) -0.0 else 0.0 - -0.0 ↦

if (false) -0.0 else 0.0 - -0.0 ↦

0.0 - -0.0

0.0
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What are The Exceptional 
Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation uses too much memory
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