
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

August 28, 2018

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding argument

2

Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

3

What About Types?

• Eventually, we learn that our functions need to include
rules indicating the required types of their arguments,
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙

4

Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?

5

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).

6

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.

7

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?

8

The Substitution Rule Allows for
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…

9

The Substitution Rule Allows for
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…

10

But We Need at Least Limited Recursion to
Define Common Algebraic Constructs

{ 1 if n = 0

n (n –1)! if n > 0
n ! =

! :
𝐍→𝐍

11

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)

12

Our third exposure
to computation:

Core Scala

13

Core Scala

• We will continue to use algebra as our model of
computation

• We will switch to Scala syntax

• We will introduce new value types

14

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”

15

Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

e + eʹ e - eʹ e * eʹ e / eʹ

• For each operator:

• If both arguments to an application of an operator are of
type Int then the application is of type Int

• If both arguments to an application of an operator are of
type Double then the application is of type Double

16

Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == eʹ e <= eʹ e >= eʹ e != e'

e > eʹ e < eʹ

• For each operator:

• If both arguments to an application of an operator are of type
Int then the application is of type Boolean

• If both arguments to an application of an operator are of type
Double then the application is of type Boolean

17

Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:

e & eʹ e | eʹ

• In both cases:

• If both arguments to an application are of type
Boolean then the application is of type Boolean

18

More Primitive Operators on
Booleans in Core Scala

Negation:

! e

• If the argument to an application is of type Boolean
then the application is of type Boolean

19

Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ

• If the first argument is of type Boolean and the second
and third argument are of the same type 𝑇 then the
application is of type 𝑇

20

Primitive Operators on Strings
in Core Scala

String Concatenation:

e + eʹ

• If both arguments are of type String then the
application is of type String

21

An Example Function
Definition in Core Scala

def square(x: Double) = x * x

22

Syntax for Defining Functions

• If there is no recursion, we may elide the return type:

def fnName(arg0: type0, …, argk: typek): returnType =

expr

def fnName(arg0: type0, …, argk: typek) =

expr

23

The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0

24

The Nature of Ints

25

Fixed Size Ints

• Unlike the integers we might write on a sheet of paper,
the values of type Int are of a fixed size.

• For every n: Int,

-231 ≤ n ≤ 231 – 1

26

Fixing the Size of Numbers
Has Many Benefits

• The time needed to compute the application of an
operation on two numbers is bounded.

• The space needed to store a number is bounded.

• We can easily reuse the space used for one number to
store another.

27

But We Need to Concern
Ourselves with Overflow

• If we compute a value larger than 231 – 1, our
representation will “wrap around” (i.e., overflow):

2147483647 + 1 ↦ -2147483648

28

The Moral of Computing with
Ints

• If possible, determine the range of potential results of a
computation

• Ensure that this range is no larger than the range of
representable values of type Int

• Otherwise, include in your computation a check for
overflow

29

The Nature of Doubles

30

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

31

Scientific Notation

6.022 × 1023

mantissa exponent

32

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but
less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

33

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed in
the form:

± m 2e

34

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

35

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

36

The Nature of Doubles

37

Scientific Notation

• Numeric values in scientific computations can span
enormous ranges, from the very large to the very small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to efficiently
represent approximate values that span a large range

38

Scientific Notation

6.022 × 10 23

mantissa

exponent

base

39

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1 but
less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

40

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed in
the form:

± m×2 e

41

Doubles

± m×2 e

• 1 ≤ m ≤ 2 53 – 1

• -1022 ≤ e ≤ 971

For more details, you can read about double-precision binary representation:
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

42

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Representations of Doubles

• Many quantities have more than one representation in
this format:

1024 × 2500

512 × 2501

43

Distances Between Doubles

• The distance between adjacent values of type Double is
not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves away
from zero

44

Operations and Rounding

• Arithmetic operations round to the closest
representable value

• Ties are broken by choosing the value with the
smaller absolute value

45

Overflow with Doubles

• Computations on Doubles that result in values larger
than the largest finite Double are represented with
special values:

Double.PositiveInfinity

Double.NegativeInfinity

46

Underflow with Doubles

• Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero Double
are represented with special values:

0.0 -0.0

47

Division By Zero

• Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

48

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity

49

Division By Zero

• Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

50

Doubles Break Common
Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 ↦
0.6000000000000001

0.1 + (0.2 + 0.3) ↦
0.6

51

Doubles Break Common
Algebraic Properties

• Equality is not reflexive:

Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦
30.0

52

Morals of Floating Point
Computation

• Avoid floating point computation whenever you need to
compute precise numeric values (such as monetary
values)

• Use floating point values only when calculating with
inexact measurements over a range larger than can be
represented with precise arithmetic

53

Morals of Floating Point
Computation

• Try to bound the margin of error in your calculation

• Don’t test for equality directly

• Instead of writing:

x == y

• Write:

abs(x - y) <= tolerance

54

Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

What’s wrong here?

abs(-0.0) ↦

if (-0.0 >= 0) -0.0 else -(-0.0) ↦

if (true) -0.0 else -(-0.0) ↦

-0.0

55

Defining Absolute Value

def abs(x: Double) = if (x > 0) x else 0.0 - x

Does it work now?

abs(-0.0) ↦

if (-0.0 > 0) -0.0 else 0.0 - -0.0 ↦

if (false) -0.0 else 0.0 - -0.0 ↦

0.0 - -0.0

0.0

56

What are The Exceptional
Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation uses too much memory

57

