
Comp 311

Functional Programming

Nick Vrvilo, Two Sigma Investments

Robert “Corky” Cartwright, Rice University

1

I should introduce myself first…

2

Self Introduction – Personal
• Just read my surname two letters at a time:

`VR - VI - LO

• Grew up in Portland, Oregon

• Pescatarian

• ♥ languages!

• Studied Japanese in high school

• High fluency & literacy in Mandarin Chinese

• Picked up a bit of Spanish

• Genealogy:

• Paternal: - ¼ Polish (Slovikoski)

- ¼ Croatian (Vrvilo)

• Maternal: - Charlemagne

- King Robert de Bruce

- Matoaka “Pocahontas” Powhatan

日本語が大好き！

我中文名字叫錢道文

3

Self Introduction – Family

4

Self Introduction –

Education and Work
• Computer Science BS from Brigham Young University

• Interned at PolyServe (startup now owned by HP)

• Co-founded startup building full-stack web apps

• Computer Science MS & PhD from Rice University

• Research in resilience, formal verification, and HPC

languages/runtimes

• Internships:
▪ Future Technologies Berkeley Lab

▪ Embedded Computing Lab, National Taiwan University

(NSF East Asia and Pacific Summer Institutes Program Fellow)

▪ Extreme-scale Technology Group, Intel Corp (twice)

• Software Engineer at Two Sigma Investments

Developing open source cluster scheduling software

5

Remember Lecture 2?

• Types

• Floating-point computation

• Quirks of 64-bit double-precision arithmetic:

• Overflow

• Underflow

• Division by zero

6

Overflow with Doubles

Computations on Doubles that result in values larger

than the largest finite Double are represented with

special values:

Double.PositiveInfinity

Double.NegativeInfinity

7

Underflow with Doubles

Computations on Doubles that result in values with

magnitudes smaller than the smallest non-zero Double

are represented with special values:

0.0 -0.0

8

Division By Zero

Division of a non-zero finite value by a zero value results

in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

9

Division By Zero

As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦ Double.PositiveInfinity

10

Division By Zero

Division of a zero value by a zero value results in

another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

11

Doubles Break Common

Algebraic Properties

Addition is not associative:

(0.1 + 0.2) + 0.3 ↦ 0.6000000000000001

0.1 + (0.2 + 0.3) ↦ 0.6

12

Doubles Break Common

Algebraic Properties

• Equality is not reflexive:

Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦ 30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦ 30.0

13

Morals of Floating Point

Computation

• Avoid floating point computation whenever you need

to compute precise numeric values (such as

monetary values)

• Use floating point values only when calculating with

inexact measurements over a range larger than can

be represented with precise arithmetic

14

Morals of Floating Point

Computation
• Try to bound the margin of error in your calculation

• Don’t test for equality directly

• Instead of writing:

x == y

• Write:

abs(x - y) <= tolerance

15

Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

What’s wrong here?

def abs(x: Double) = if (x > 0) x else 0.0 - x

16

Computing Conditional

Expressions

• We used a slight of hand when presenting if
expressions

if (e1) e2 else e3

• According to the substitution model of computation,

how do we compute the value of this expression?

17

Computing Conditional

Expressions

if (e1) e2 else e3

• First we compute e1 ↦ v1, then e2 ↦ v2, then e3 ↦ v3

• If v1 is true then reduce to v2

• Otherwise reduce to v3

18

But Consider the Following

Expression

if (false) 1/0 else 3

This expression should reduce to 3

19

New Rule for Conditional

Expressions

• To reduce an if expression:

• Reduce the test clause

• If the test clause reduces to true, reduce the then
clause

• Otherwise, reduce the else clause

20

What are The Exceptional

Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation uses too much memory

21

Programming With

Intention

22

Programming With Intention

• There is far too much broken software in the world…

• The number of mission critical domains affected by

programming is increasing

• Space exploration and satellites, defense, medical

devices, automobiles, finance

23

Programming With Intention

• Static types help us reduce some errors by restricting

the potential results of a computation

• We still need to defend against exceptional events

• And we need to defend against silent errors

• Silent errors are actually our most insidious risk

24

Defending Against

Exceptional Conditions

• With division on Ints, we should ensure that the divisor

is non-zero

• We will return to guarding against exhaustion of finite

resources later

• For now, assume we have sufficient resources,

provided that our time and space requirements

have some bound

25

Defending Against Unbounded Resource

Consumption and Silent Failures

• We’ve discussed some of the caveats when
programming with Ints and Doubles

• To further defend against such errors, we will make

use of a design recipe

26

The Design Recipe

27

The Design Recipe
• Analysis: What are the objects in the problem domain? What data

types we will use to represent them?

• Contract: What are the names of our functions and their
parameters? What are the requirements of the data they consume
and produce? What is the meaning of what our program
computes?

• Repeat until we are confident in our program’s correctness

1. Write some tests

2. Sketch a function template

3. Define the function

28

Example: Calculating Profit for a

Movie Theater
(Problem Statement from “How to Design Programs” 2001)

• The owner of a movie theater collected the following data:

• At $5.00 per ticket, 120 people attend a performance

• Decreasing by $0.10 increases attendance by 15

people

• A performance costs $180 plus $0.04 per attendee

• Define a function to calculate the exact relationship

between ticket price and profit

29

Analysis

• We are working with monetary values and counts of

attendees

• Attendees are whole numbers

• To avoid rounding errors, we will use Ints for

monetary values

• Therefore all monetary values will be represented in

cents

30

Analysis

• We need to compute profit

• Profit is calculated as revenue - cost

• Cost is dependent on attendance

31

Contracts

• First, define a contract for our function:

• What is the name of the function?

• What considerations should go into the names we choose?

• What are the static types of the arguments that our function

consumes?

• What other constraints must hold on the values it consumes?

• What is the static type of its result?

• What else does it ensure about its result?

32

Contract for Attendance

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
…

} ensuring (_ >= 0)

33

Syntax and Typing of

Contracts

def fnName(arg0: type0, …, argk: typek):returnType = {

require(expr)

expr

} ensuring (expr)

The static types of the require and ensuring clauses

must be of type Boolean

34

Statement of Purpose

• Use a comment to provide a brief statement of the

meaning of the function

• Well chosen names for functions and parameters are

often some of the best documentation!

35

Statement of Purpose for

Attendance

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
…

} ensuring (_ >= 0)

36

Write Some Tests

120 == attendance(500)

• We can think of tests as constraint equations in algebra

• The program we are constructing is a solution to these constraints

37

Sketch a Function Template

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
an algebraic expression

} ensuring (_ >= 0)

38

Defining Functions

• Design Principle: “Keep It Simple, Stupid”

• Given the tests we’ve written so far and the template

we’ve sketched, write the simplest solution that

passes those tests

• Keeping the definition simple will:

• Force us to include adequate test coverage

• Help to keep us from over-engineering

39

Define The Function

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)

120
} ensuring (_ >= 0)

40

We Need More Tests

120 == attendance(500)
135 == attendance(490)

41

Redefinition (Attempt 1)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)

120 + (500 - ticketPrice) * (15 / 10)
} ensuring (_ >= 0)

42

But Now Some Tests Fail

120 == attendance(500)
135 == attendance(490)

43

Division With Ints

attendance(490) ↦

120 + (500 - 490) * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * 1↦

120 + 10 ↦

130

44

Redefinition (Attempt 2)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
120 + ((500 - ticketPrice) * 3) / 2

} ensuring (_ >= 0)

45

Now Our Two Tests Succeed

120 == attendance(500)
135 == attendance(490)

46

Let’s Add Harder Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Now our ensuring clause fails!

47

Redefinition (Attempt 3)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)

} ensuring (_ >= 0)

48

(To Do: Apply Our Design

Recipe to max)

def max(m: Int, n: Int) = if (m >= n) m else n

49

Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

50

Let’s Add More Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

51

Overflow Does Not Appear To

Be a Problem…

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

52

Or Does It…

attendance(2147483647) ↦

max(0, 120 + ((500 - 2147483647) * 3) / 2) ↦

max(0, 120 + (-2147483147 * 3) / 2) ↦

max(0, 120 + -2147482145 / 2) ↦

max(0, 120 + -1073741072) ↦

max(0, -1073740952) ↦

if (0 >= -1073740952) 0 else -1073740952↦

0

53

Bounding Cost of Attendance

• We can determine an exact bound for the maximum
allowable parameter to attendance:

• For each subexpression, solve for the parameter

values that would result in overflow:

(500 - ticketPrice) > Int.MaxValue

(500 - ticketPrice) < Int.MinValue

etc.

54

Bounding Values Based on

Domain Knowledge
• We can also find appropriate bounds by considering the

range of values required by our problem domain

• Often, these bounds will be much tighter

• In our example, we can see from our formula that attendance

is zero whenever the cost of a ticket is $5.80 or above

• We can also see that even free tickets achieve attendance of

only 870 people

• And it is likely that our theater cannot seat 870 people!

55

Bounding Cost of Attendance

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0 & ticketPrice <= 1000)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)

} ensuring (_ >= 0)

56

Now We Should Remove Our

Test on Int.MaxValue

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

57

Add Let’s Add Some More

Tests While We’re At It

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(580)
2 == attendance(579)
870 == attendance(0)

58

Now We Can Apply the Design

Recipe to Our Remaining Functions

/**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
require (ticketPrice >= 0 & ticketPrice <= 1000)
18000 + 4 * attendance(ticketPrice)

} ensuring (_ >= 0)

59

/**
* Returns revenue received by the theater when
* showing a film, as a function of ticket price.
*/
def revenue(ticketPrice: Int) = {

require (ticketPrice >= 0 & ticketPrice <= 1000)
ticketPrice * attendance(ticketPrice)

} ensuring (_ >= 0)

Now We Can Apply the Design

Recipe to Our Remaining Functions

60

What Should Be The Ensuring

Clause on Profit?

/**
* Returns profit enjoyed by the theater after showing
* a film, defined as the difference between revenue
* costs.
*/

def profit(ticketPrice: Int) = {
require (ticketPrice >= 0 & ticketPrice <= 1000)
revenue(ticketPrice) - cost(ticketPrice)

}

61

Following The Design Recipe includes writing

tests on all of our newly defined functions

35130 = profit(510)
-21480 = profit(0)

-18000 = profit(1000)
…

0 = revenue(0)
0 = revenue(1000)

53550 = revenue(510)
…

18420 = cost(510)
21480 = cost(0)

18000 = cost(1000)
…

62

And We Haven’t Forgot About

Max!

Int.MaxValue == max(0, Int.MaxValue)
0 == max(-1, 0)
1 == max(-1, 1)

0 == max(0, Int.MinValue)
0 == max(Int.MinValue, 0)

…

63

How Many Helper Functions

Should We Include?

As a guideline:

• Include a helper function for each of the

dependencies mentioned in your problem

statement

• Include a helper function for new dependencies

discovered during testing

64

Inlining Into One Large Function

Makes Code Far Less Readable

def profit(ticketPrice: Int) = {
require (ticketPrice >= 0 & ticketPrice <= 1000)

ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2) -
18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)

}

65

