Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 7, 2017

Announcements

. Homework 1 will be assigned next Thursday

. Watch “"Working Hard to Keep it Simple” available on
the course website

Including Constant Definitions

. We can include constant definitions within functions by
using val

. We refer to expressions prefixed with a sequence of
constant definitions as compound expressions

Place After The Requires Clause and
Before the “Result” Expression

def cost(ticketPrice: Int) = {
require (ticketPrice >= 0 & ticketPrice <= 1000)

val fixedCost = 18000
val perAttendeeCost = 4

fixedCost + perAttendeeCost * attendance(ticketPrice)
} ensuring (>= 0)

To Reduce A Compound
Expression

. First compute the value of each constant definition, top

to bottom

. Then reduce the result expression, substituting each
occurrence of a constant name with its computed value

Conditional Functions
On Ranges

Conditional Functions On
Ranges

. Often a computation falls into distinct cases depending

on which of a finite set of ranges a value falls into

. In such cases, it can help to break the number line
into distinct regions that we must handle separately:

Designing Conditional
Functions

. Example: Graduated Income Tax (Single Filer):

Up to $9,075: 10% $186,351 to $405,100: 33%

$9,075 to $36,900: 15% $405,101 to $406,750: 35%

$36,901 to $89,350: 25% $405,751 or more: 39.6%

$89,351 to 186,350: 28%

. We follow the Design Recipe

Graduated Income Tax: Data
Analysis and Definition

. We use Intsto denote US$ values and tax percentages

. Both income and tax should be non-negative

. We break the number line into the relevant intervals

10% 15% 25%

$0 $9075 $36,900

Contract

/>I<>I<

* Given an 1income 1n U.S. Dollars,
* returns the dollar value of tax
* owed for a single tax payer, using
* 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int) = {
require(income >= 0)

} ensuring (>= 0)

Function Application Examples

We should develop at least one example per case, as well
as borderline cases

100

incomeTax(1000)
907 = incomeTax(9075)

907 + 138 = 1ncomeTax(10000)

Our Function Template for
Conditional Functions

/¥
* Given an income in U.S. Dollars, } else if (income <= cutoff3) {
* returns the dollar value of tax .
* owed for a single tax payer, using } else if (income <= cutoff4) {
* 2014-2015 IRS tax brackets. -
*x/ } else if (income <= cutoff5) {
def incomeTax(income: Int): Int = { -
require(income >= 0) } else 1if (income <= cutoff6) {
if (income <= cutoff0) { } else { // income > cutoff6
} else if (income <= cutoffl) { }
} ensuring (>= 0)

} else if (income <= cutoff2) {

Defining Our Constant Values
in One Place

val
val

val
val

val
val

val
val

bracket® = 0
cutoff®@ = 0
bracketl = 100

cutoffl = 9075

bracket2 = 150
cutoff2 = 36900

bracket3 = 250
cutoff3d = 89350

val
val

val
val

val
val

val
val

bracket4 = 280
cutoff4 = 186350

bracket5 = 330
cutoff5 = 405100

bracketo = 350
cutoffo = 406750

bracket7 = 396
cutoff7 = Int.MaxValue

As We Fill In Cases, We Find a
Common Pattern

/>I<>I<

* Gliven:
* an income 1n U.S. Dollars
* the next lowest cutoff in U.S. Dollars
* a tax percentage for the bracket above the cutoff
* Returns the income tax due for the given income
*/
def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int): Int = {
require(income >= 0)
(income - cutoff) * bracket / divisor + incomeTax(cutoff)
} ensuring (>= 0)

And Now We Call This New Function to Fill
in the The Income Tax Function Template

/>|<>|<

* Given an income in U.S. Dollars, returns the dollar value of tax
* owed for a single tax payer, using 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int): Int = {
require(income >= 0)

if (income <= cutoff0) {
bracket0
} else if (income <= cutoffl) {
incomeTaxForBracket(income, cutoff0®, bracketl)
} else if (income <= cutoff2) {
incomeTaxForBracket(income, cutoffl, bracket2)
} else if (income <= cutoff3) {
incomeTaxForBracket(income, cutoff2, bracket3)
} else if (income <= cutoff4) {
incomeTaxForBracket(income, cutoff3, bracket4)
} else if (income <= cutoff5) {
incomeTaxForBracket(income, cutoff4, bracket5)
} else if (income <= cutoff6) {
incomeTaxForBracket(income, cutoff5, bracket6)
} else { // income > cutoff6
incomeTaxForBracket(income, cutoff6, bracket7)
}
e

}

nsuring (_ >= 0)

Remarks On Conditional
Functions

. The clauses in a conditional function need not all have

the same form

. Avoid factoring out code into a helper function until
there is more than one place to call the helper

. There is more we can factor out in this example, but
first we will need more powerful language features
(stay tuned)

Conditional Functions
On Point Values

. O1

(1€

Conditional Functions On
Point Values

'ten the cases on a conditional function must test for

uality rather than whether values fall in a range

. This is especially common with String values

. What about Boolean values?

. Double values should not be tested this way (why?)

Example: Days in a Month

Given the name of a month, we want to return the
number of days

Data Analysis and Definition

We use STtrings to denote months and Ints for the
number of days

Contract

. We state the preconditions in documentation:

/>|<>|<
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {

} ensuring (<= 31)
. ensuring (0 <)

. How can we improve the precondition? What data types
would we want?

A Function Template for Conditional
Functions on Point Values

/>|<>|<

* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {
month match {
case ... => ..,

\ -
} ensuring (<= 31)
. ensuring (0 <)

Syntax for Match

expr, match {
case Pattern; => expr;

case Patterny, => expry

}

Primitive Value Patterns

A primitive value pattern is either:
. A primitive value
. A free parameter

. The special “don’t care” pattern:

Matching a Primitive Value
With a Pattern

A primitive value v matches:
. Itself
. A free parameter

. The special “"don’t care” pattern

« should only be used as the final clause of a
match (why?)

Meaning of a Match
Expression

. To reduce a match expression:
expry match {
case Pattern; => expr,

case Patterny => expry,

}

Reduce expr, to a value v

Find the first pattern k matching v (if it exists) and reduce to
expr, (replacing all occurrences of k with v if k is a free
parameter)

Failure to match a pattern results in a new form of exceptional
condition

Using Match for Point Value
Matching

/>|<>|<

* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {
month match {
case "January" => 31
case "February" => 28
case "March" => 31
case "April" => 30
case "May" => 31
case "June" => 30
case "July" => 31
case "August" => 31
case "September" => 30
case "October" => 31
case "November" => 30
case "December" => 31

}

} ensuring (<= 31)

Reducing Match

days (“September”)

P

“September” match {

case
case
case
case
case
case
case
case
case
case
case
case

}

} ensuring (

"January" => 31
"February" => 28

"March" => 31
"April" => 30
"May" => 31

"June" => 30
"July" => 31

"August" => 31
"September" => 30

"October" => 31
"November" => 30
"December" => 31

<= 31)

B

30

A Match With a Free
Parameter

def plural(word: String): String =
word match {
case "deer" => "deer"
case "fish" => "fish"
case "mouse" => "mice"
case X => X + "s"

Compound Datatypes

Compound Datatypes

. Although many computations can be performed on
primitive data types, it is often useful to combine data
into larger structures

. We call all data of this form compound data

. The two simplest compound datatypes in Core Scala
are tuples and arrays

Tuple Values

. A tuple value contains a sequence of values
(Vi, ..., Vy)

. There is one empty tuple ()

. Tuples of length one do not exist (why?)

. The value type of a tuple is simply the tuple of the
corresponding value types

(Ty, oy Ty)

Tuple Types

. The empty tuple has the special type Un1t

. The static type of a tuple expression:

(e;, ... ey)

IS

Tuple Types

. Tuple types allow us to combine data of distinct types.

For example:
(Int, Boolean, String)

However, tuple types restrict the length of any
corresponding tuple value

Accessing Tuple Elements

. We can access the kth element of an expression e with static type (T,
..., Ty) using the syntax:

e. K

. The static type of this expression is T,
. Note that tuples are 1-indexed

. Example:

(1,2,3). 2 & 2

Accessing Tuple Elements

. We can access the elements of a tuple using match
expressions

. We add the following syntactic form to our definition
of patterns

(Pattern,, ... , Patterny)

. We call this new syntactic form a tuple pattern

Accessing Tuple Elements

. A tuple matches a tuple pattern iff each element of the
tuple matches a corresponding element of the tuple
pattern, and vice versa (bijection)

. Does (X,V¥,Z) match (1,2)?

Income Tax Revisited

def incomeTaxForBracketCutoff(income: Int, bracketCutoff: (Int, Int)) = {
require(income >= 0)

bracketCutoff match {
case (bracket, cutoff) => {
(1ncome - cutoff) * bracket /
divisor + 1ncomeTax(cutoff)

}
}

} ensuring (>= 0)

Tuple Types and Arrow Types

. We can now view every arrow type as taking exactly
one parameter:

. Example:

(Int, String, Boolean) - Int

Tuple Types and Arrow Types

. We can also use tuple types to denote that a function
returns “multiple values™:

. Example:

(Int, String, Boolean) - (Int, Double)

Array Values

. An array is a sequence of values all of the same value
type

Array(1l,2,3)

Array Types

If the elements of an array value are of type T then the
array is of type Array|T]

If the expressions €;, ... , €yare of static type T
then the expression

Array(e,, ..., ey)

. has static type

Array[T]

Array Types

. Array types require that all elements of an array share
a common type

However, array types match array values of any length

. Contrast with tuple types

Accessing Array Values

. We can access the Kth element of an expression of type
Array[T] with the syntax:

expr(k)

. The static type of this expression is T

. Note that arrays are zero-indexed

. Example:

Array(1l,2,3)(2) » 3

Accessing Array Elements

. We can access the elements of an array using match
expressions

. We add the following syntactic form to our definition
of patterns:

Array(Pattern,, ... , Patterny)

. We call this new syntactic form an array pattern

Accessing Array Elements

An array matches an array pattern iff each element of the
array matches a corresponding element of the array
pattern, and vice versa

Accessing Array Elements

def sumOfSquares(coordinates: Array[Int]) = {
coordinates match {
case Array(x,y,z) => X*X + y*y + z*z
}
}

Structural Data

Structural Data

Tuples and arrays allow us to combine multiple
primitive values into a single data value

However,

They do not allow us to attach names to the
constituent elements

They do not allow us to distinguish elements of
conceptually distinct datatypes

Case Classes

. We can think of a case class as a tuple with its own

type and accessors for its elements

Case Classes

case class Coordinate(x: Int, y: Int)

Simple Syntax for Case Classes

case class Name(fieldl: Type,, ..., fieldy: Typey)

Creating Instances of a Case
Class

. We construct new instances of a case class

case class C(field;: Type,, ..., Tieldy: Typey)
. with the syntax

C(expry, ..., expry)

. To reduce this expression, reduce each argument eXpry to a value
Vi, forming the value C(vy, ..., Vy)

If the types of eXpry, ... ,expry match the types of the
corresponding fields, then this expression has type C

Accessing Fields of a Case
Class

. Given a case class:

case class C(field;: Type,, ..., fieldy: Typey)

. We can access field with name T1eldy of an instance C(Vvq,
., Vy) with the expression syntax:

C(vy,...,vy).fieldy

. The static type of this expression is Typeg

Accessing Fields of a Case
Class

def magnitude(coordinate: Coordinate) = {
coordinate.x * coordinate.x +
coordinate.y * coordinate.y

}

Accessing Class Elements

. We can access the elements of a case class instance

using match expressions

For each case class, we add the following syntactic
form to our definition of patterns

C(Pattern,, ... , Patterny)

. We call this new syntactic form a class pattern

Accessing Case Class Elements

. An instance of a case class C(Vv,, ..., Vy) matches
a class pattern C(P,, ..., Py) iff

. The class name is identical to the class pattern name

. Each element of the instance matches a
corresponding element of the class pattern

Accessing Case Class Elements

def magnitude(coordinate: Coordinate) =
coordinate match {
case Coordinate(x,y) => X*x + y*y

}

