
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 7, 2017

Announcements

• Homework 1 will be assigned next Thursday

• Watch “Working Hard to Keep it Simple” available on
the course website

Including Constant Definitions

• We can include constant definitions within functions by
using val

• We refer to expressions prefixed with a sequence of
constant definitions as compound expressions

Place After The Requires Clause and
Before the “Result” Expression

def cost(ticketPrice: Int) = {
require (ticketPrice >= 0 & ticketPrice <= 1000)

val fixedCost = 18000
val perAttendeeCost = 4

fixedCost + perAttendeeCost * attendance(ticketPrice)
} ensuring (_ >= 0)

To Reduce A Compound
Expression

• First compute the value of each constant definition, top
to bottom

• Then reduce the result expression, substituting each
occurrence of a constant name with its computed value

Conditional Functions
On Ranges

Conditional Functions On
Ranges

• Often a computation falls into distinct cases depending
on which of a finite set of ranges a value falls into

• In such cases, it can help to break the number line
into distinct regions that we must handle separately:

Designing Conditional
Functions

• Example: Graduated Income Tax (Single Filer):

• We follow the Design Recipe

• Up to $9,075: 10%

• $9,075 to $36,900: 15%

• $36,901 to $89,350: 25%

• $89,351 to 186,350: 28%

• $186,351 to $405,100: 33%

• $405,101 to $406,750: 35%

• $405,751 or more: 39.6%

Graduated Income Tax: Data
Analysis and Definition

• We use Ints to denote US$ values and tax percentages

• Both income and tax should be non-negative

• We break the number line into the relevant intervals

$0 $9075 $36,900

10% 15%

...

25%

Contract

/**
* Given an income in U.S. Dollars,
* returns the dollar value of tax
* owed for a single tax payer, using
* 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int) = {
require(income >= 0)
...

} ensuring (_ >= 0)

Function Application Examples

We should develop at least one example per case, as well
as borderline cases

100 = incomeTax(1000)

907 = incomeTax(9075)

907 + 138 = incomeTax(10000)

...

Our Function Template for
Conditional Functions

/**
* Given an income in U.S. Dollars,
* returns the dollar value of tax
* owed for a single tax payer, using
* 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int): Int = {
require(income >= 0)

if (income <= cutoff0) {
...
} else if (income <= cutoff1) {
...
} else if (income <= cutoff2) {

...
} else if (income <= cutoff3) {
...
} else if (income <= cutoff4) {
...
} else if (income <= cutoff5) {
...
} else if (income <= cutoff6) {
...
} else { // income > cutoff6
...
}

} ensuring (_ >= 0)

Defining Our Constant Values
in One Place

val bracket0 = 0
val cutoff0 = 0

val bracket1 = 100
val cutoff1 = 9075

val bracket2 = 150
val cutoff2 = 36900

val bracket3 = 250
val cutoff3 = 89350

val bracket4 = 280
val cutoff4 = 186350

val bracket5 = 330
val cutoff5 = 405100

val bracket6 = 350
val cutoff6 = 406750

val bracket7 = 396
val cutoff7 = Int.MaxValue

As We Fill In Cases, We Find a
Common Pattern

/**
* Given:
* an income in U.S. Dollars
* the next lowest cutoff in U.S. Dollars
* a tax percentage for the bracket above the cutoff
* Returns the income tax due for the given income
*/

def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int): Int = {
require(income >= 0)
(income - cutoff) * bracket / divisor + incomeTax(cutoff)

} ensuring (_ >= 0)

And Now We Call This New Function to Fill
in the The Income Tax Function Template

/**
* Given an income in U.S. Dollars, returns the dollar value of tax
* owed for a single tax payer, using 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int): Int = {
require(income >= 0)

if (income <= cutoff0) {
bracket0

} else if (income <= cutoff1) {
incomeTaxForBracket(income, cutoff0, bracket1)

} else if (income <= cutoff2) {
incomeTaxForBracket(income, cutoff1, bracket2)

} else if (income <= cutoff3) {
incomeTaxForBracket(income, cutoff2, bracket3)

} else if (income <= cutoff4) {
incomeTaxForBracket(income, cutoff3, bracket4)

} else if (income <= cutoff5) {
incomeTaxForBracket(income, cutoff4, bracket5)

} else if (income <= cutoff6) {
incomeTaxForBracket(income, cutoff5, bracket6)

} else { // income > cutoff6
incomeTaxForBracket(income, cutoff6, bracket7)

}
} ensuring (_ >= 0)

Remarks On Conditional
Functions

• The clauses in a conditional function need not all have
the same form

• Avoid factoring out code into a helper function until
there is more than one place to call the helper

• There is more we can factor out in this example, but
first we will need more powerful language features
(stay tuned)

Conditional Functions
On Point Values

Conditional Functions On
Point Values

• Often the cases on a conditional function must test for
equality rather than whether values fall in a range

• This is especially common with String values

• What about Boolean values?

• Double values should not be tested this way (why?)

Example: Days in a Month

Given the name of a month, we want to return the
number of days

Data Analysis and Definition

We use Strings to denote months and Ints for the
number of days

Contract
• We state the preconditions in documentation:

• How can we improve the precondition? What data types
would we want?

/**
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {

...
} ensuring (_ <= 31)
. ensuring (0 < _)

A Function Template for Conditional
Functions on Point Values

/**
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {

month match {
case ... => ...
...

}
} ensuring (_ <= 31)
. ensuring (0 < _)

Syntax for Match

expr0 match {
case Pattern1 => expr1

...
case PatternN => exprN

}

Primitive Value Patterns

A primitive value pattern is either:

• A primitive value

• A free parameter

• The special “don’t care” pattern: _

Matching a Primitive Value
With a Pattern

A primitive value v matches:

• Itself

• A free parameter

• The special “don’t care” pattern _

• _ should only be used as the final clause of a
match (why?)

Meaning of a Match
Expression

• To reduce a match expression:

• Reduce expr0 to a value v

• Find the first pattern k matching v (if it exists) and reduce to
exprk (replacing all occurrences of k with v if k is a free
parameter)

• Failure to match a pattern results in a new form of exceptional
condition

expr0 match {
case Pattern1 => expr1

...
case PatternN => exprN

}

Using Match for Point Value
Matching

/**
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {

month match {
case "January" => 31
case "February" => 28
case "March" => 31
case "April" => 30
case "May" => 31
case "June" => 30
case "July" => 31
case "August" => 31
case "September" => 30
case "October" => 31
case "November" => 30
case "December" => 31

}
} ensuring (_ <= 31)

Reducing Match
days(“September”)

↦

“September” match {
case "January" => 31
case "February" => 28
case "March" => 31
case "April" => 30
case "May" => 31
case "June" => 30
case "July" => 31
case "August" => 31
case "September" => 30
case "October" => 31
case "November" => 30
case "December" => 31

}
} ensuring (_ <= 31)

↦

30

A Match With a Free
Parameter

def plural(word: String): String =
word match {
case "deer" => "deer"
case "fish" => "fish"
case "mouse" => "mice"
case x => x + "s"

}

Compound Datatypes

Compound Datatypes

• Although many computations can be performed on
primitive data types, it is often useful to combine data
into larger structures

• We call all data of this form compound data

• The two simplest compound datatypes in Core Scala
are tuples and arrays

Tuple Values
• A tuple value contains a sequence of values

• There is one empty tuple ()

• Tuples of length one do not exist (why?)

• The value type of a tuple is simply the tuple of the
corresponding value types

(v1, ..., vN)

(T1, ..., TN)

Tuple Types
• The empty tuple has the special type Unit

• The static type of a tuple expression:

(e1, ... eN)

is

(T1, ..., TN)

where

e1: T1, ... eN: TN

Tuple Types

• Tuple types allow us to combine data of distinct types.
For example:

(Int, Boolean, String)

• However, tuple types restrict the length of any
corresponding tuple value

Accessing Tuple Elements

• We can access the kth element of an expression e with static type (T1,
..., TN) using the syntax:

e._k

• The static type of this expression is Tk

• Note that tuples are 1-indexed

• Example:

(1,2,3)._2 ↦ 2

Accessing Tuple Elements

• We can access the elements of a tuple using match
expressions

• We add the following syntactic form to our definition
of patterns

(Pattern1, ... , PatternN)

• We call this new syntactic form a tuple pattern

Accessing Tuple Elements

• A tuple matches a tuple pattern iff each element of the
tuple matches a corresponding element of the tuple
pattern, and vice versa (bijection)

• Does (x,y,z) match (1,2)?

Income Tax Revisited

def incomeTaxForBracketCutoff(income: Int, bracketCutoff: (Int, Int)) = {
require(income >= 0)

bracketCutoff match {
case (bracket, cutoff) => {

(income - cutoff) * bracket /
divisor + incomeTax(cutoff)

}
}

} ensuring (_ >= 0)

Tuple Types and Arrow Types

• We can now view every arrow type as taking exactly
one parameter:

• Example:

(Int, String, Boolean) → Int

Tuple Types and Arrow Types

• We can also use tuple types to denote that a function
returns “multiple values”:

• Example:

(Int, String, Boolean) → (Int, Double)

Array Values

• An array is a sequence of values all of the same value
type

Array(1,2,3)

Array Types
• If the elements of an array value are of type T then the

array is of type Array[T]

• If the expressions e1, ... , eN are of static type T
then the expression

Array(e1, ..., eN)

• has static type

Array[T]

Array Types

• Array types require that all elements of an array share
a common type

• However, array types match array values of any length

• Contrast with tuple types

Accessing Array Values
• We can access the kth element of an expression of type
Array[T] with the syntax:

expr(k)

• The static type of this expression is T

• Note that arrays are zero-indexed

• Example:

Array(1,2,3)(2) ↦ 3

Accessing Array Elements

• We can access the elements of an array using match
expressions

• We add the following syntactic form to our definition
of patterns:

Array(Pattern1, ... , PatternN)

• We call this new syntactic form an array pattern

Accessing Array Elements

An array matches an array pattern iff each element of the
array matches a corresponding element of the array
pattern, and vice versa

Accessing Array Elements

def sumOfSquares(coordinates: Array[Int]) = {
coordinates match {

case Array(x,y,z) => x*x + y*y + z*z
}

}

Structural Data

Structural Data

• Tuples and arrays allow us to combine multiple
primitive values into a single data value

• However,

• They do not allow us to attach names to the
constituent elements

• They do not allow us to distinguish elements of
conceptually distinct datatypes

Case Classes

• We can think of a case class as a tuple with its own
type and accessors for its elements

Case Classes

case class Coordinate(x: Int, y: Int)

Simple Syntax for Case Classes

case class Name(field1: Type1, ..., fieldN: TypeN)

Creating Instances of a Case
Class

• We construct new instances of a case class

case class C(field1: Type1, ..., fieldN: TypeN)

• with the syntax

C(expr1, ..., exprN)

• To reduce this expression, reduce each argument exprK to a value
vK, forming the value C(v1, ..., vN)

• If the types of expr1,...,exprN match the types of the
corresponding fields, then this expression has type C

Accessing Fields of a Case
Class

• Given a case class:

• We can access field with name fieldK of an instance C(v1,
..., vN) with the expression syntax:

C(v1,...,vN).fieldK

• The static type of this expression is TypeK

case class C(field1: Type1, ..., fieldN: TypeN)

Accessing Fields of a Case
Class

def magnitude(coordinate: Coordinate) = {
coordinate.x * coordinate.x +
coordinate.y * coordinate.y

}

Accessing Class Elements

• We can access the elements of a case class instance
using match expressions

• For each case class, we add the following syntactic
form to our definition of patterns

C(Pattern1, ... , PatternN)

• We call this new syntactic form a class pattern

Accessing Case Class Elements

• An instance of a case class C(v1, ..., vN) matches
a class pattern C(P1, ..., PN) iff

• The class name is identical to the class pattern name

• Each element of the instance matches a
corresponding element of the class pattern

Accessing Case Class Elements

def magnitude(coordinate: Coordinate) =
coordinate match {
case Coordinate(x,y) => x*x + y*y

}

