
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 6, 2018



Announcements

• Homework 0 is “due” today.
(You should now know how to use the SVN repo.)

• Homework 1 assignment has been moved to Tuesday, 
and the due date will shift likewise.

2



Class Methods

• Methods are functions defined in the body of a class 
definition. They have direct access to the members of a 
class instance

• Syntactically, they are placed between braces, after the 
class parameters

3



Class Methods

case class C(field1: Type1, ..., fieldN: TypeN) {
def m1(x11: TypeP11, ..., xK1: TypePk1): TypeR11 =

expr
...
def mJ(x1J: TypeP1J, ..., xKJ: TypePkJ): TypeR1J =

expr
}

4



Method Definitions

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

}

5



Applying a Class Method
• Given a class definition:

class C(p1: T1, ..., pk: Tk) { ...

def m(param1: T11, paramN: T1N): T = e

...

}

• To reduce the application of a method:

C(v1, ..., vk).m(arg1, ..., argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor parameters with constructor arguments and 
method parameters with method arguments

6



Applying a Class Method

Coordinate(5,3).magnitude() ↦

5*5 + 3*3 ↦

25 + 9 ↦

34

7



Compound Value Patterns

def dotProduct(c1: Coordinate, c2: Coordinate) = {
(c1, c2) match {

case (Coordinate(x1,y1), Coordinate(x2,y2)) => 
x1*x2 + y1*y2

}
}

8



Patterns in Assignments

Patterns in Scala may also be used for destructuring assignments:

def dotProduct(c1: Coordinate, c2: Coordinate) = {
val Coordinate(x1, y1) = c1
val Coordinate(x2, y2) = c2
x1*x2 + y1*y2

}

9



Symbols in Patterns:
Binding or Constant?

• A symbol with a lower-case first character is a binding symbol

• A character with an upper-case first character is a value

• You can make a variable a constant using `backticks`

val pi = 3.14

val One = 1.0

expr match {

case pi => "Pi"

case One => "One"

}

10



Singleton Objects

11



Singleton Objects

• Also, we often would like to organize identifiers and 
functions together into a single entity

• When compiling a Scala file, it is required that all 
constant and function definitions are placed inside a 
class or object 

• For this purpose, we can make use of singleton objects

12



Singleton Objects
object IncomeTax {

val cutoff0 = 0
val bracket0 = 0

val bracket1 = 100
val cutoff1 = 9075
...

def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int) = { 
require(income >= 0)
(income - cutoff) * bracket / divisor + incomeTax(cutoff)

} ensuring (_ >= 0)
}

13



Syntax for Singleton Objects

object Name {

valDefs*

functionDefs*
}

14



We Can Refer to the Constants and Functions 
in the Object Using Dot Notation

IncomeTax.bracket1

100 
↦

15



We Can Refer to the Constants and Functions 
in the Object Using Dot Notation

IncomeTax.incomeTax(100000)

21174 
↦

16



Case Objects

case object Name {

valDefs*

functionDefs*
}

17

• Declaring a case object denotes your intent:
You will use this object as a value and use it as a pattern 
in match expressions.

• Using a normal object denotes a container for “static” 
methods declarations, or a value that won’t be matched.



Homework

18



Homework Grading Criteria

• Style: 50%

• Correctness: 50%

19



Style of Program Code and 
Test Code 

• Clarity

• Comments

• Contracts

• Design Principles

20



Clarity: Is the Program Easy to 
Read?

• Is the program concise? 

“Make every word say.”
(Strunk and White, The Elements of Style)

• Are functions kept relatively small, with sub-parts 
broken up according to the problem domain? 

Think of the profit, revenue, and cost example from
Lecture 2

21



Clarity: Is the Program Easy to 
Read?

• Are the names of functions and variables syntactically 
consistent? 

• For instance, do they all use camelCase? 

• Are similar functions given names of similar length?

22



Clarity: Is the Program Easy to 
Read?

• Are names adequately descriptive and appropriate? 

• For example, using single letter names for public 
functions is not appropriate

• Are consistent metaphors used for functions that 
work together?

23



Clarity: Is the Program Easy to 
Read?

• Is the program consistent in its indentation and 
whitespace? 

• This can affect readability

• Is there appropriate spacing? 

• Code that is too close together can be hard to read

24



Comments

• Does each function include a statement of purpose? 

• Are the comments excessive? 

• Comments embedded in program should be used 
only for cases where it is not clear locally why the 
program is doing what it does 

• The reader should be expected to know the language 
the text is written in

25



Contracts

• Do the parameter types and return types of all functions and 
variables make sense? 

• Are require and ensuring clauses included when 
necessary? 

• Are the included require and ensuring clauses defined 
appropriately?

• Are requirements that cannot be expressed in require and 
ensuring clauses defined as documentation?

26



Design Principles

• Does the program stick to the constructs covered in 
class so far?

• Is the program purely functional?

27



Design Principles
• Does the program follow templates provided in class 

when appropriate?

• For instance, is the function body a simple algebraic 
expression? 

• Is it a series of if–else expressions breaking up 
sub-ranges? 

• Is it a match expression breaking up an abstract 
datatype?

28



Design Principles

• Does the program include abstractions to factor out 
common code? (DRY)

• Copy-and-paste coding should be strongly avoided

• Does the program avoid unnecessary complexity? 
(KISS)

29



Correctness

• Does the program compile?

• Do all student submitted tests pass? 

• Does the program include all entry points required by 
the assignment?

• Are all tests automated? Tests should indicate on their 
own that either they pass or fail

30



Correctness

• Example Tests: Are simple examples included in the 
tests showing how the function behaves under usually 
circumstances?

• Stress Tests: Are there additional tests ensuring that 
the function behaves appropriately when given extreme 
data values 

0, 1, -1, PositiveInfinity, 
NegativeInfinity, NaN, etc.

31



Correctness

• Persuasive Tests: Is there adequate coverage to 
convince the reader that the program behaves as 
expected?

• Does the program perform correctly when subjected to 
additional testing provided by the course staff?

32



Expected Test Structure

• All tests in a program should be captured in a test suite

• For each component of a program, there should be a 
corresponding test class

• For each function, there should be a corresponding test 
function

• For each test function, there should be multiple tests, 
checking both common and extreme cases

33



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testAttendance() = {
...

}
def testCost() = {

...
}
def testProfit() = {

...
}
def testRevenue() = {

...
}
def testMax() = {

...
}

}
34



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testAttendance() {
assertEquals(120, attendance(500))
assertEquals(135, attendance(490))
assertEquals(165, attendance(470))
assertEquals(0, attendance(1000))
assertEquals(0, attendance(580))
assertEquals(2, attendance(579))
assertEquals(870, attendance(0))

}
...

}

35



Example: Testing Our Theater 
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {
...
def testRevenue() {
assertEquals(0, revenue(0))
assertEquals(0, revenue(1000))
assertEquals(53550, revenue(510))

}
...

}

36


