Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 6, 2018

Announcements

. Homework 0 is “due” today.
(You should now know how to use the SVN repo.)

. Homework 1 assignment has been moved to Tuesday,

and the due date will shift likewise.

Class Methods

. Methods are functions defined in the body of a class

definition. They have direct access to the members of a
class instance

. Syntactically, they are placed between braces, after the
class parameters

Class Methods

case class C(field,: Type,;, ..., Tieldy: Typey) {

def m;(xy;: TypePy;, ..., Xgi: TypeP,;): TypeR;; =
expr
expr

}

Method Definitions

case class Coordinate(x: Int, y: Int) {
def magnitude() = xX*x + y*y

}

Applying a Class Method

. Given a class definition:
class C(py: Ty, «vvy Pi: TW) {

def m(param;: T,;, paramy: Ty): T = e

. To reduce the application of a method:
C(vy, ..., Vvy).m(arg,, ..., argy)
.- Reduce the receiver and arguments, left to right

- Reduce the body of m, replacing constructor parameters with constructor arguments and
method parameters with method arguments

Applying a Class Method

Coordinate(5,3).magnitude() »
5%5 + 3*3 b
25 + 0 b

34

Compound Value Patterns

def dotProduct(cl: Coordinate, c2: Coordinate) = {
(cl, c2) match {

case (Coordinate(xl,yl), Coordinate(x2,y2)) =>
X1*x2 + yl*y2

Patterns in Assignments

Patterns in Scala may also be used for destructuring assignments:

def dotProduct(cl: Coordinate, c2: Coordinate) = {
val Coordinate(xl, yl) = cl
val Coordinate(x2, y2) c2
X1*x2 + yl*y2

}

Symbols in Patterns:
Binding or Constant?

* A symbol with a lower-case first character is a binding symbol
* A character with an upper-case first character is a value

* You can make a variable a constant using "backticks
val p1 = 3.14
val One = 1.0
expr match {
case pi1 => "P1"

case One => "One"

10

Singleton Objects

Singleton Objects

. Also, we often would like to organize identifiers and
functions together into a single entity

. When compiling a Scala file, it is required that all
constant and function definitions are placed inside a

class or object

For this purpose, we can make use of singleton objects

12

Singleton Objects

object IncomeTax {

val cutoff® = 0
val bracket® = 0

val bracketl = 100
val cutoffl = 9075

def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int) = {
require(income >= 0)
(1ncome - cutoff) * bracket / divisor + incomeTax(cutoff)

} ensuring (>= 0)

13

Syntax for Singleton Objects

object Name {
valDefs*

functionDefs*

}

14

We Can Refer to the Constants and Functions
in the Object Using Dot Notation

IncomeTax.bracketl
-

100

15

We Can Refer to the Constants and Functions
in the Object Using Dot Notation

IncomeTax.1ncomeTax(100000)
-

21174

16

Case Objects

Declaring a case object denotes your intent:
You will use this object as a value and use it as a pattern
in match expressions.

Using a normal object denotes a container for “static”
methods declarations, or a value that won’t be matched.

case object Name {
valDefs*

functionDefs*

}

17

Homework

Homework Grading Criteria

. Style: 50%

. Correctness: 50%

19

Style of Program Code and
Test Code

. Clarity

. Comments

. Contracts

. Design Principles

20

Clarity: Is the Program Easy to
Read?
. Is the program concise?

“Make every word say.”
(Strunk and White, The Elements of Style)

. Are functions kept relatively small, with sub-parts
broken up according to the problem domain?

Think of the profit, revenue, and cost example from
Lecture 2

21

Clarity: Is the Program Easy to
Read?

. Are the names of functions and variables syntactically
consistent?

. For instance, do they all use camelCase?

. Are similar functions given names of similar length?

22

Clarity: Is the Program Easy to
Read?

. Are names adequately descriptive and appropriate?

. For example, using single letter names for public
functions is not appropriate

. Are consistent metaphors used for functions that
work together?

23

Clarity: Is the Program Easy to
Read?

. Is the program consistent in its indentation and
whitespace?

. This can affect readability
. Is there appropriate spacing?

. Code that is too close together can be hard to read

24

Comments

Does each function include a statement of purpose?
Are the comments excessive?

Comments embedded in program should be used
only for cases where it is not clear locally why the
program is doing what it does

The reader should be expected to know the language
the text is written in

25

Contracts

Do the parameter types and return types of all functions and
variables make sense?

Are require and ensuring clauses included when
necessary?

Are the included require and ensuring clauses defined
appropriately?

Are requirements that cannot be expressed in require and
ensuring clauses defined as documentation?

26

Design Principles

Does the program stick to the constructs covered in
class so far?

Is the program purely functional?

27

Design Principles

Does the program follow templates provided in class
when appropriate?

For instance, is the function body a simple algebraic
expression?

Is it a series of 1T-else expressions breaking up
sub-ranges?

Is it a match expression breaking up an abstract
datatype?

28

Design Principles

Does the program include abstractions to factor out
common code? (DRY)

. Copy-and-paste coding should be strongly avoided

. Does the program avoid unnecessary complexity?
(KISS)

29

Correctness

Does the program compile?
Do all student submitted tests pass?

Does the program include all entry points required by
the assignment?

. Are all tests automated? Tests should indicate on their

own that either they pass or fail

30

Correctness

Example Tests: Are simple examples included in the

tests showing how the function behaves under usually
circumstances?

. Stress Tests: Are there additional tests ensuring that

the function behaves appropriately when given extreme
data values

©, 1, -1, PositiveInfinity,
NegativeInfinity, NaN, etc.

31

Correctness

Persuasive Tests: Is there adequate coverage to
convince the reader that the program behaves as

expected?

Does the program perform correctly when subjected to
additional testing provided by the course staff?

32

Expected Test Structure

. All tests in a program should be captured in a test suite

For each component of a program, there should be a
corresponding test class

For each function, there should be a corresponding test
function

For each test function, there should be multiple tests,
checking both common and extreme cases

33

Example: Testing Our Theater
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testAttendance() = {
def testCost() = {

def testProfit() = {

def testRevenue() = {

def testMax() = {

34

Example: Testing Our Theater
Profit Calculator

class TheaterProfitTest (name:

def testAttendance() {
assertEquals (120,
assertEquals (135,
assertEquals (165,
assertEquals

assertEquals
assertEquals 870

)
()
(attendance(470))
(0, attendance(1000))
assertEquals (0, attendance(580))
(2, attendance(579))
(attendance(0))

String) extends TestCase(name) {

attendance(500))
attendance (490

)

35

Example: Testing Our Theater
Profit Calculator

class TheaterProfitTest(name: String) extends TestCase(name) {

def testRevenue() {
assertEquals(0, revenue(0))
assertEquals(0, revenue(1000))
assertEquals (53550, revenue(510))

}

36

