
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 11, 2018

Homework 1

• Please submit your homework via the SVN / turnin
system, in a folder named hw_1

• The specific files to submit are defined in the
description for each assignments

• For each section, please turn in only your final program
resulting from completion of the section

2

Please Restrict Your Homework Submission
to Features Covered in Class

3

Current Core Scala Features
• object

• case class

• val

• if / else

• match / case

• require, ensuring

• Int, Double, String

• Array, Tuples

• Arithmetic operators

• (In)equality operators

• Logical and / or

• assertEquals etc.

• λ-expressions (ensuring)

• Plus the stuff from today!

4

Please Restrict Your Homework Submission
to Features Covered in Class

These should be the only import statements you need:

import junit.framework.TestCase

import junit.framework.Assert._

(or equivalent imports auto-generated by your IDE for
your JUnit test class)

5

Methods and Operators

6

Syntactic Sugar For Binary
Methods

• We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def add(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

7

Syntactic Sugar For Binary
Methods

Coordinate(1,2).add(Coordinate(3,4))

↦
Coordinate(4,6)

8

Syntactic Sugar For Binary
Methods

• We can elide the dot in method calls on binary methods

• We can also elide the enclosing parentheses around the
sole argument

9

Syntactic Sugar For Binary
Methods

Coordinate(1,2) add Coordinate(3,4)

↦
Coordinate(4,6)

10

Operator Symbols

• Scala allows the use of operator symbols in method names

• In fact, operators are simply methods in Scala

1 + 2 ↦ 3

1.+(2) ↦ 3

11

Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y

def +(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

}

12

Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

↦
Coordinate(4,6)

13

Requires Clauses on Class
Constructors

case class Name(field1: Type1, …, fieldN: TypeN) {

require (boolean-expression)

• Checked on every constructor call

• Because case class instances are immutable, this ensures the
property holds for the lifetime of an instance

14

Equals on Case Classes

• The equals method on a case class instance checks for
structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true

15

Equals on Case Classes

• Note that equals is a binary method, and so we can also
write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true

16

Equals on Case Classes

• The == operator in Scala, unlike Java, delegates to the
equals method:

Rational(4,6) == Rational(4,6) ↦

true

17

Equals on Case Classes

• Of course, the built in equals method does not check for
mathematical equality:

Rational(4,6) == Rational(2,3) ↦

false

18

Equals on Case Classes

• Why is this definition of equality acceptable on case
classes?

• What other definition is available to us?

Rational(4,6) == Rational(2,3) ↦

false

19

Short-Circuiting And and Or
Operators

• Just as we have defined a short-circuiting if-then-else
operator, we can define short-circuiting and/or
operators:

&& ||

• How do we define the static and dynamic semantics
of these operators?

• When are they useful?

20

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }

21

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString

22

The Uniform Access Principle

• Client code should not be affected by whether an
attribute is defined as a field or a method

• Only applies to pure (side-effect free) methods

• Can be strange even for some pure methods (what
are some examples?)

23

Abstract Datatypes

24

Abstract Datatypes

• Often, we wish to abstract over a collection of
compound datatypes that share common properties

• For example, we might wish to define an abstract
datatype for shapes, with separate case classes for each
of several shapes

• For this purpose, we define an abstract class and use
subclassing

25

Abstract Datatypes

abstract class Shape
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape

26

abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val pi = 3.14
def area = pi * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {

def area = length * width
}

Abstract Methods

27

abstract class Shape {
val pi = 3.14
def area: Double = this match {

case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height

}
}

One Method
to Rule Them All

28

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor
parameters with constructor arguments and method
parameters with method arguments

29

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with constructor
arguments and method parameters with method
arguments

30

The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate
superclass of C

31

Abstract Datatype
Example: Option

32

The Option Class

• The Option class is a collection of zero or one items.

• The parameterized type Option[T] denotes a collection
of at most one object with type T.

• The Some[T] subclass represents the non-empty case.

• The None object represents the empty case.

33

abstract class Option[T] {
def get: T
def isEmpty: Boolean
def nonEmpty: Boolean

}

case class Some[T](x: T) extends Option[T] {
def get = x
def isEmpty = false
def nonEmpty = true

}

case object None extends Option[Nothing] {
def get: T =
throw new java.util.NoSuchElementException()

def isEmpty = true
def nonEmpty = false

}

Option Implementation

34

