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Design Templates for Abstract 
Datatypes 

(Part 2)



Case Two 
We Expect Many New Functions 

But Few New Variants 



Case 2: We Expect Many New 
Functions But Few New Variants 

• This is a case that traditional functional programming 
handles well

• Classic example domains: Compilers, theorem provers, 
numeric algorithms, machine learning

• Declare a top-level function with cases for each data 
variant

a.k.a., The Visitor Pattern



Again We Turn to Pattern 
Matching

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y

}
}



We Can Define Arbitrary Functions 
Without Modifying Data Definitions

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case _ => shape1
}

}



But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y
case Triangle(b,h) => b*h/2

}
}



def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {

case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case _ => shape1

}
}

But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype



sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Circle(radius: Double) extends Shape
case class Triangle(base: Double, height: Double)

extends Shape

Sealed Data Types

9

• Adding the sealed keyword to an abstract type
indicates that all subclasses of that type are declared 
in the current compilation unit.

• Provides extra information to the compiler for
optimizations and diagnostics



object Math {
val pi = 3.141592653589793

}

sealed abstract class Shape {  
def area: Double = this match {

// case Square(x) => x * x
case Circle(r) => Math.pi * r * r
case Triangle(b, h) => 0.5 * b * h

}
}

Sealed Data Types

10

warning: match may not be exhaustive.
It would fail on the following input: Square(_)

def area: Double = this match {



Recursively Defined 
Datatypes



Recursively Defined Datatypes

• Case classes allow us to combine multiple pieces of a 
data into a single object

• But sometimes we don’t know how many things we 
wish to combine

• We can use recursion to define datatypes of unbounded 
size

• This case corresponds to the Composite Design Pattern



Backus-Naur Form
For Lists of Ints

List ::= Empty
| Cons(Int,List)



Examples of Lists

Empty
Cons(3, Empty)

Cons(3, Cons(1, Empty))
Cons(3, Cons(1, Cons(4, Empty)))



Defining Lists With Scala Case 
Classes

abstract class List
case object Empty extends List
case class Cons(head: Int, tail: List) extends List



Where Do We Put Functions 
Over Lists?

• We do not expect to define new subtypes of lists

• We do expect to define many new functions over lists

• Similar to our Case Two Design Template for Abstract 
Datatypes

• Thus, we will start with our pattern matching template



An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => {
if (n == 0) true
else containsZero(ys)

}
}

}



An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}



Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}



Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We need to determine our base case



Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We must determine how to combine these values



Generalizing to Our First 
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

This template is an example of natural recursion
or structural recursion: We recursively decompose
and then recombine a computation according to 
the natural structure of the data.



Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

Here the base case is easy: 
An empty list does not contain zero

(or anything else)



Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

We break into cases based on the pieces
from match: Either our first element n is zero
or the answer lies with the rest of the list



Another Example: 
How Many Elements?

def length(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => 1 + length(ys)

}
}



Another Example: 
The Sum of the Elements

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)

}
}



Another Example: 
The Product of the Elements

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)

}
}



Converting Hours to Seconds

Problem Statement: Given a list of times measured in 
hours, we want to construct a list of corresponding times 
measured in seconds



Converting Hours to Seconds

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))

}
}

def seconds(hours: Int) = 3600 * hours



Generalizing to a Template

def ourFunction(xs: List): List = {
xs match {
case Empty => …
case Cons(n, ys) => Cons(…n…, 

ourFunction(ys))
}

}

Really, this is the same template as
before, but now Cons is our combining

operation



The Natural Numbers

Nat ::= 0
| Next(Nat)



The Natural Numbers

Nat ::= 0
| Next(Nat)

Here we are between Cases One and Two for Abstract
Datatypes:

• No new variants expected
• Many new functions expected
• But some basic functions are intrinsic to the type



Defining The Natural Numbers 
in Scala

abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat



Defining The Natural Numbers 
in Scala

abstract class Nat {
def +(n: Nat): Nat
def *(n: Nat): Nat

}



case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers 
in Scala



case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers 
in Scala

Again we have natural 
recursion: base case, 

recursion, combination



Example Reduction
(3 + 2)

Next(Next(Next(Zero)) + Next(Next(Zero))  ↦
Next(Next(Next(Zero)) + Next(Next(Zero))) ↦
Next(Next(Next(Zero) + Next(Next(Zero)))) ↦
Next(Next(Next(Zero + Next(Next(Zero))))) ↦

Next(Next(Next(Next(Next(Zero)))))



Factorial

def factorial(n: Nat): Nat = {
n match {
case Zero => Next(Zero)
case Next(m) => n * factorial(m)

}
}



Transferring The Pattern 
To Ints

def factorial(n: Int): Int = {
require (n >= 0)

if (n == 0) 1
else n * factorial(n - 1)

} ensuring (_ > 0)



Combining Via Auxiliary 
Functions



Combining Via Auxiliary 
Functions

• As our examples with natural numbers shows, it is 
often desirable to define the combining operation of a 
natural recursion as an auxiliary function

• We can apply this insight to lists and use our template 
to cover yet more cases



Sorting Lists

def sort(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => insert(n, sort(ys))

}
}

We need to explain how to 
insert into a sorted list



Insertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))

}
}

}



Insertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))

}
}

}
This parameter is not traversed,

but is used for combination and comparison
Other functions follow this pattern.



Appending Two Lists

abstract class List {
/**
* Returns a new list with the elements of
* this list appended to the given list.
*/
def ++(ys: List): List

}



Appending Two Lists

case object Empty extends List {
def ++(ys: List) = ys

}



Appending Two Lists

case class Cons(first: Int, rest: List) extends List {
def ++(ys: List) = Cons(first, rest ++ ys)

}


