
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 19, 2017

Design Templates for Abstract
Datatypes

(Part 2)

Case Two
We Expect Many New Functions

But Few New Variants

Case 2: We Expect Many New
Functions But Few New Variants

• This is a case that traditional functional programming
handles well

• Classic example domains: Compilers, theorem provers,
numeric algorithms, machine learning

• Declare a top-level function with cases for each data
variant

a.k.a., The Visitor Pattern

Again We Turn to Pattern
Matching

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y

}
}

We Can Define Arbitrary Functions
Without Modifying Data Definitions

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case _ => shape1
}

}

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

val pi = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => pi * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * y
case Triangle(b,h) => b*h/2

}
}

def makeLikeFirst(shape0: Shape, shape1: Shape) = {
(shape0, shape1) match {

case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case _ => shape1

}
}

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Circle(radius: Double) extends Shape
case class Triangle(base: Double, height: Double)

extends Shape

Sealed Data Types

9

• Adding the sealed keyword to an abstract type
indicates that all subclasses of that type are declared
in the current compilation unit.

• Provides extra information to the compiler for
optimizations and diagnostics

object Math {
val pi = 3.141592653589793

}

sealed abstract class Shape {
def area: Double = this match {

// case Square(x) => x * x
case Circle(r) => Math.pi * r * r
case Triangle(b, h) => 0.5 * b * h

}
}

Sealed Data Types

10

warning: match may not be exhaustive.
It would fail on the following input: Square(_)

def area: Double = this match {

Recursively Defined
Datatypes

Recursively Defined Datatypes

• Case classes allow us to combine multiple pieces of a
data into a single object

• But sometimes we don’t know how many things we
wish to combine

• We can use recursion to define datatypes of unbounded
size

• This case corresponds to the Composite Design Pattern

Backus-Naur Form
For Lists of Ints

List ::= Empty
| Cons(Int,List)

Examples of Lists

Empty
Cons(3, Empty)

Cons(3, Cons(1, Empty))
Cons(3, Cons(1, Cons(4, Empty)))

Defining Lists With Scala Case
Classes

abstract class List
case object Empty extends List
case class Cons(head: Int, tail: List) extends List

Where Do We Put Functions
Over Lists?

• We do not expect to define new subtypes of lists

• We do expect to define many new functions over lists

• Similar to our Case Two Design Template for Abstract
Datatypes

• Thus, we will start with our pattern matching template

An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => {
if (n == 0) true
else containsZero(ys)

}
}

}

An Example Function for Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We need to determine our base case

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

We must determine how to combine these values

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => …
case Cons(n, ys) => … n … ourFunction(ys) …

}
}

This template is an example of natural recursion
or structural recursion: We recursively decompose
and then recombine a computation according to
the natural structure of the data.

Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

Here the base case is easy:
An empty list does not contain zero

(or anything else)

Filling in the Template

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}
}

We break into cases based on the pieces
from match: Either our first element n is zero
or the answer lies with the rest of the list

Another Example:
How Many Elements?

def length(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => 1 + length(ys)

}
}

Another Example:
The Sum of the Elements

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)

}
}

Another Example:
The Product of the Elements

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)

}
}

Converting Hours to Seconds

Problem Statement: Given a list of times measured in
hours, we want to construct a list of corresponding times
measured in seconds

Converting Hours to Seconds

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))

}
}

def seconds(hours: Int) = 3600 * hours

Generalizing to a Template

def ourFunction(xs: List): List = {
xs match {
case Empty => …
case Cons(n, ys) => Cons(…n…,

ourFunction(ys))
}

}

Really, this is the same template as
before, but now Cons is our combining

operation

The Natural Numbers

Nat ::= 0
| Next(Nat)

The Natural Numbers

Nat ::= 0
| Next(Nat)

Here we are between Cases One and Two for Abstract
Datatypes:

• No new variants expected
• Many new functions expected
• But some basic functions are intrinsic to the type

Defining The Natural Numbers
in Scala

abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat

Defining The Natural Numbers
in Scala

abstract class Nat {
def +(n: Nat): Nat
def *(n: Nat): Nat

}

case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers
in Scala

case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

}

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) = m + (n * m)

}

Defining The Natural Numbers
in Scala

Again we have natural
recursion: base case,

recursion, combination

Example Reduction
(3 + 2)

Next(Next(Next(Zero)) + Next(Next(Zero)) ↦
Next(Next(Next(Zero)) + Next(Next(Zero))) ↦
Next(Next(Next(Zero) + Next(Next(Zero)))) ↦
Next(Next(Next(Zero + Next(Next(Zero))))) ↦

Next(Next(Next(Next(Next(Zero)))))

Factorial

def factorial(n: Nat): Nat = {
n match {
case Zero => Next(Zero)
case Next(m) => n * factorial(m)

}
}

Transferring The Pattern
To Ints

def factorial(n: Int): Int = {
require (n >= 0)

if (n == 0) 1
else n * factorial(n - 1)

} ensuring (_ > 0)

Combining Via Auxiliary
Functions

Combining Via Auxiliary
Functions

• As our examples with natural numbers shows, it is
often desirable to define the combining operation of a
natural recursion as an auxiliary function

• We can apply this insight to lists and use our template
to cover yet more cases

Sorting Lists

def sort(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => insert(n, sort(ys))

}
}

We need to explain how to
insert into a sorted list

Insertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))

}
}

}

Insertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))

}
}

}
This parameter is not traversed,

but is used for combination and comparison
Other functions follow this pattern.

Appending Two Lists

abstract class List {
/**
* Returns a new list with the elements of
* this list appended to the given list.
*/
def ++(ys: List): List

}

Appending Two Lists

case object Empty extends List {
def ++(ys: List) = ys

}

Appending Two Lists

case class Cons(first: Int, rest: List) extends List {
def ++(ys: List) = Cons(first, rest ++ ys)

}

