
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 27, 2018



Announcements

• Homework 2 is due two weeks from today

• Assignment description PDF on Piazza

• No provided “skeleton” code

• Simple interface (compilation/linking) check provided

2



Scala Type Hierarchy

3



Type Hierarchies
Inheritance (subclass / superclass relationships) form a 
complete lattice in the Scala type system:

• Each pair of classes has exactly one:

• Least upper-bound

• Greatest lower-bound

• The same applies to all value types

4



Hasse Diagrams

5



Scala Type Lattice

6

Nothing

Null

Any

AnyRef AnyVal

Int Double Unit …String …
List

:: Nil



Parametric Polymorphism
(Parametric/Generic Types)

7



Parametric Types

• We have defined two forms of lists: lists of ints and lists 
of shapes

• Many computations useful for one are useful for the 
other:

• Map, reduce, filter, etc.

• It would be better to define lists and their operations 
once for all of these cases



Parametric Types

• Higher-order functions take functions as arguments 
and return functions as results

• Likewise, parametric types, a.k.a., a generic types, takes 
types as arguments and return types as results



Parametric Lists

• Every application of this parametric type to an 
argument yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]

}



Parametric Lists

• Every application of this parametric type to an argument 
yields a new type:

• We augment the declarations of type parameters to permit 
an upper bound on all instantiations of a parameter 

• By default, the bound is Any

abstract class List[T <: Any] {
def ++(ys: List[T]): List[T]

}



Syntax of Parametric Class 
Definitions

• We denote type parameters as T1, T2, etc.

• We denote all other types with N, M, etc.

<modifiers> class C[T1 <: N,..,TN <: 
N] extends N {

<ordinary class body>
}



Syntax of Parametric Class 
Definitions

• Declared type parameters T1, …, TN are in scope 
throughout the entire class definition, including:

• The bounds of type parameters

• The extends clause

• Object definitions must not be parametric

<modifiers> class C[T1 <: N,..,TN <: 
N] extends N {

<ordinary class body>
}



Parametric Lists

• Every application of this parametric type yields a new 
type:

List[Int]
List[String]

List[List[Double]]
etc.



Parametric Lists

• Every application (a.k.a., instantiation) of this 
parametric type yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]

}

Note that our parametric type can be
instantiated with type parameters, including its own!



case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys

}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T](head, tail ++ ys)

}

Our definition requires a separate type Empty[S] for 
every instantiation of S. Thus we must define Empty as

a class rather than an object.

Parametric Lists



Covariance

• Can one instantiation of a parametric type be a subtype 
of another?

• Currently our rules allow this only in the reflexive case:

List[Int] <: List[Int] in E



Covariance

• It would be useful to allow some instantiations to be 
subtypes of another

• For example, we would like it to be the case that:

List[Int] <: List[Any]



Covariance
• In general, we say that a parametric type C is 

covariant with respect to its type parameter S if:

• We must be careful that such relationships do not 
break the soundness of our type system

S <: T in E

implies

C[S] <: C[T] in E



Covariance
• For a parametric type such as:

• And types S and T, such that S <: T in some 
environment E:

• What must we check about the body of class List to 
allow for List[S] <: List[T] in E?

abstract class List[T <: Any] {
def ++(ys: List[T]): List[T]

}



Covariance

• Consider instantiations for types String and Any:

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}
abstract class List[String] {
def ++(ys: List[String]): List[String]

}



Covariance

• If these were ordinary classes connected by an 
extends class:

• We would need to ensure that the overriding 
definition of ++ in class List[String] was 
compatible with the overridden definition in 
List[Any]



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}
abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]

}

But if List[String] <: List[Any] in E
then this is not a valid override



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}
abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]

}

On the other hand, the return types
are not problematic



Covariance

• From our example, we can glean the following rule:

• We allow a parametric class C to be covariant with 
respect to a type parameter T so long as T does not 
appear in the types of the method parameters of C



Covariance

• We stipulate that a parametric type is covariant in a 
parameter T by prefixing a + at the definition of T

• (We will return to our definition of append later)

abstract class List[+T] {}



Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
}

Now we can define Empty as an object that extends the bottom of the List types



Covariance and Append

• The problem with our original declaration of append 
was that it was not general enough:

• There is no reason to require that we always append 
lists of identical type

• Really, we can append a List[S] for any supertype 
of our List[T]

• The result will be of type List[S]



Lower Bounds on Type 
Parameters

• Thus far, we have allowed type parameters to include 
upper bounds:

• They can also include lower bounds:

• Or they can include both:

T <: S

T >: U

T >: S <: U



Parametric Functions

• Just as we can add type parameters to a class 
definition, we can also add them to a function 
definition

• The type parameters are in scope in the header and 
body of the function



Covariance and Append
abstract class List[+T] {
def ++[S >: T](ys: List[S]): List[S]

}

case object Empty extends List[Nothing] {
def ++[S](ys: List[S]) = ys

}

case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
def ++[S >: T](ys: List[S]) = Cons(head, tail ++ ys)

}



Map Revisited

abstract class List[+T] {
…
def map[U](f: T => U): List[U]

}


