Comp 311 Functional Programming

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

October 16, 2018

Graph Algorithms

- Many problems can be expressed as traversals or computations over graphs
 - Travel planning
 - Circuit design
 - Social networks
 - etc.

Graph Algorithms

• We consider the problem of finding a path from one vertex to another in a graph

Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

```
case class Graph(elements: (String, List[String])*)
extends Function1[String, List[String]] {
  val _elements = Map(elements:_*)
  def apply(s: String) = _elements(s)
}
```

Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

What is a Trivially Solvable Problem?

• If the start and end vertices are identical

How Do We Generate Sub-Problems?

Find nodes connected to start and recur

How Do We Relate the Solutions?

• We need only find one solution; no need to combine multiple solutions

Contract Attempt 1

/**
 * Create a path from start to finish in G
 */
def findRoute(start: String, end: String,
 graph: Graph): List[String]

But what if there is no path?

Options

- Often the result of a computation is that no satisfactory value could be found
 - Lookup in a table with a key that does not exist
 - Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {...}

object None extends Option[Nothing] {...}

class Some[+A](val contained: A) extends Option[A] {
 ...
}

Options Are Monads!

```
abstract class Option[+A] {
  def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
  def map[B](f: (A) ⇒ B): Option[B]
  def withFilter(p: (A) ⇒ Boolean):
    FilterMonadic[A, collection.Iterable[A]]
}
```

Contract Attempt 2

Reduce to Backtracking Cases

Recursive Sub-Problems

Termination

- routeFromOrigins is structurally recursive:
 - It terminates provided that findRoute terminates
- But findRoute terminates only if there are no cycles in the graph it traverses

Contract for findRoute Attempt #2

Reduce to Backtracking Cases

How does Scala's for-expression work with an Option?

Recursive Sub-Problems

Termination

- routeFromOrigins is structurally recursive:
 - terminates provided that findRoute terminates
- findRoute terminates only if graph is acyclic

Contract for findRoute Attempt #3

Accumulating Knowledge

Accumulating Knowledge

- Remember visited nodes to prevent infinite regress
- Pass this to recursive calls via an *accumulator*

Reduce to Backtracking

Reduce to Backtracking

```
def routeFromOrigins(origins: List[String], destination: String,
                     graph: Graph, visited: List[String]):
Option[List[String]] = {
  origins match {
    case Nil => None
    case origin :: origins => {
      findRoute(origin, destination, graph, visited) match {
        case None => routeFromOrigins(origins, destination,
                                       graph, origin :: visited)
        case Some(route) => Some(route)
      }
                  Can we still guarantee termination
                     without this cons operation?
```

Accumulators

- An *accumulator* parameter allows us to "remember" knowledge from one recursive call to another
 - Often essential for correctness in generative recursion
 - Useful for saving space in structural recursion
 - Also critical for supporting tail-calls in many cases

Using Accumulators for Structural Recursion

- Let us define a function fromOrigin, which:
 - Takes a list of Int values, with each value denoting a relative distance to the point to its left
 - Returns a list of Int values denoting the absolute distances to the origin

fromOrigin Example

Applying fromOrigin to the following input list

2 3	5	2	8	• • •
-----	---	---	---	-------

results in the following output list

2 5	10	12	20	•••
-----	----	----	----	-----

Defining fromOrigin

```
def fromOrigin(xs: List[Int]): List[Int] = {
    xs match {
        case Nil => Nil
        case x :: xs => x :: fromOrigin(xs).map(_+x)
    }
}
```

Defining fromOrigin

```
def fromOrigin(xs: List[Int]): List[Int] = {
    xs match {
        case Nil => Nil
        case x :: xs =>
            x :: { for (y <- fromOrigin(xs)) yield y+x }
    }
}</pre>
```

How many steps does it take to compute an application of fromOrigin, in comparison to the length of the list?

Cost of fromOrigin

```
fromOrigin(List(2,3,5,2,8)) ↦
List(2,3,5,2,8) match {
    case Nil => Nil
    case x :: xs => x :: fromOrigin(xs).map(_+x)
    } ↦
```

```
2 :: (fromOrigin(List(3,5,2,8)) map (_+2)) ↦*
2 :: (3 :: (fromOrigin(List(5,2,8) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(5, 7, 15) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(8, 10, 18)) map(_+2)) ↦*
2 :: (List(5, 10, 12, 20)) ↦*
List(2, 5, 10, 12, 20)
```

Cost of fromOrigin

- Each recursive call map over the argument list
 - which takes *n* steps for a list of length *n*

$$\sum_{i=1}^{n} i = \frac{(n)(1+n)}{2} = O(n^2)$$

Big O Notation

We say:

$$f(x) = O(g(x)) \text{ as } x \to \infty$$

meaning there is a constant k and some value x₀ such that

$$|f(x)| \leq k |g(x)|$$
 for all $x \geq x_0$

Big O Notation

Typically the part:

as $x \to \infty$

is implicit

Effectively, we are defining equivalence classes of functions

Accumulating Distance to the Origin

We could reduce the time taken by instead accumulating the distance to the origin in a parameter

Accumulating Distance to the Origin

```
def fromOriginAcc(xs: List[Int]) = {
    def inner(xs: List[Int], fromOrigin: Int): List[Int] = {
        xs match {
            case Nil => Nil
            case x :: xs => {
                val xToOrigin = x + fromOrigin
                xToOrigin :: inner(xs, xToOrigin)
            }
        }
        inner(xs, 0)
}
```

Guidelines for Using Accumulators in Functions

- Start with the standard design recipes!
- Add an accumulator only after the initial design attempt

Guidelines for Using Accumulators in Functions

- Recognize the benefit of having an accumulator
- Understand what the accumulator denotes

- If the function is structurally recursive and uses an auxiliary function, consider an accumulator
 - Study hand evaluations to see if an accumulator helps in reducing time or space costs

```
def invert[T](xs: List[T]): List[T] = {
  xs match {
    case Nil => Nil
    case x :: xs => makeLastItem(x, invert(xs))
 }
}
def makeLastItem[T](x: T, xs: List[T]): List[T] = {
  xs match {
    case Nil => List(x)
    case y :: ys => y :: makeLastItem(x, ys)
 }
}
```

- there is nothing for invert to forget
- consider accumulating the items walked over

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => ...
            case y :: ys => ... inner(... ys ... y ... accumulator ...)
        }
        inner(xs, Nil)
}
```

- accumulator must stand for a list
- it could stand for all elements that precede XS

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => ...
            case y :: ys => ... inner(... ys ... y :: accumulator)
        }
        inner(xs, Nil)
}
```

• Now it is clear that the accumulator contains all the elements that precede xs *in reverse order*

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => accumulator
            case y :: ys => inner(ys, y :: accumulator)
        }
    }
    inner(xs, Nil)
}
```

- The key step in the design process is to establish the invariant that describes the relationship between the accumulator and the parameters of a function
- Establish appropriate accumulator invariant is an art that takes practice

```
def sum1(xs: List[Int]): Int = {
    xs match {
        case Nil => 0
        case y :: ys => y + sum1(ys)
    }
}
```

An Accumulator for Sum

- walking over elements of a list to return their sum
- obvious thing to accumulate is the the sum so far

An Accumulator for Sum

```
def sum2(xs: List[Int]): Int = {
    def inner(xs: List[Int], accumulator: Int): Int = {
        xs match {
            case Nil => accumulator
            case y :: ys => inner(ys, y + accumulator)
        }
    }
    inner(xs, 0)
}
```

Reducing Naïve Sum

 $sum1(List(5, 3, 7, 9)) \mapsto^*$ $5 + sum1(List(3, 7, 9)) \mapsto^*$ $5 + 3 + sum1(List(7, 9)) \rightarrow^*$ $5 + 3 + 7 + sum1(List(9)) \rightarrow^*$ $5 + 3 + 7 + 9 + sum1(List()) \rightarrow^*$ $5 + 3 + 7 + 9 + 0 \mapsto$ 8 + 7 + 9 + 0 **→** 15 + 9 + 0 **→** 24 + 0 ↦ 24

Reducing Accumulated Sum

 $sum2(List(5, 3, 7, 9)) \mapsto^*$ inner(List(5, 3, 7, 9), 0) \mapsto^* $inner(List(3, 7, 9), 5 + 0) \mapsto^*$ inner(List(3, 7, 9), 5) \mapsto^* inner(List(7, 9), 5 + 3) →* inner(List(7, 9), 8) →* inner(List(9), 7 + 8) \mapsto^* inner(List(9), 15) →* inner(List(), 9 + 15) →* inner(List(), 24) \mapsto^* 24

An Accumulator for Sum

- The key advantage of our accumulator version of sum is space
- The advantage is not a matter as to whether the space is used on the stack or in the heap as an argument!
- The ability to reduce the sum as we recur is the primary cause of space savings

This Would Not Save Space

```
def sum3(xs: List[Int]): Int = {
    def inner(xs: List[Int], accumulator: () => Int): Int = {
        xs match {
            case Nil => accumulator()
            case y :: ys => inner(ys, () => (y + accumulator()))
        }
    }
    inner(xs, () => 0)
}
```

Thoughts on Accumulators

- Accumulator-based functions are not always faster
 - Accumulator-based factorial tends to be slower
- Accumulator-based functions do not always take less space

Thoughts on Accumulators

- Accumulator-based functions are usually harder to understand
- Programmers new to functional programming are seduced by them because sometimes they can be similar to loops

Thoughts on Accumulators

 Use accumulators judiciously and understand the benefits you are trying to achieve