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Graph Algorithms

• Many problems can be expressed as traversals or 
computations over graphs

• Travel planning

• Circuit design

• Social networks

• etc.



Graph Algorithms

• We consider the problem of finding a path from one 
vertex to another in a graph



Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

case class Graph(elements: (String, List[String])*) 
extends Function1[String, List[String]] {
val _elements = Map(elements:_*)
def apply(s: String) = _elements(s)

}



Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

val sampleGraph = 
new Graph ("A" -> List("E", "B"),

"B" -> List("A"),
"C" -> List("D"),
"D" -> List(),
"E" -> List("C", "F"),
"F" -> List("A", "G"),
"G" -> List())



What is a Trivially Solvable 
Problem?

• If the start and end vertices are identical



How Do We Generate Sub-
Problems?

• Find nodes connected to start and recur



How Do We Relate the 
Solutions?

• We need only find one solution; no need to combine 
multiple solutions



Contract Attempt 1

/**
* Create a path from start to finish in G
*/
def findRoute(start: String, end: String,

graph: Graph): List[String]

But what if there is no path?



Options

• Often the result of a computation is that no satisfactory 
value could be found

• Lookup in a table with a key that does not exist

• Attempting to find a path that does not exist



Scala Options

abstract class Option[+A] {…}

object None extends Option[Nothing] {…}

class Some[+A](val contained: A) extends Option[A] {
…

}



Options Are Monads!

abstract class Option[+A] {
def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
def map[B](f: (A) ⇒ B): Option[B]
def withFilter(p: (A) ⇒ Boolean): 
FilterMonadic[A, collection.Iterable[A]]

}



Contract Attempt 2

/**
* Create a path from start to finish in G, if
* it exists.
*/
def findRoute(start: String, end: String, 

graph: Graph): 
Option[List[String]]



Reduce to Backtracking Cases

def findRoute(start: String, end: String, 
graph: Graph): Option[List[String]] = {

if (start == end) Some(List(end))
else for (route <- routeFromOrigins(graph(start), end, graph)) 

yield start :: route
}



Recursive Sub-Problems

def routeFromOrigins(origins: List[String], destination: String, 
graph: Graph): Option[List[String]] = {

origins match {
case Nil => None
case origin :: origins => {

findRoute(origin, destination, graph) match {
case None => routeFromOrigins(origins, destination,graph)
case Some(route) => Some(route)

}
}

}
}



Termination

• routeFromOrigins is structurally recursive:

• It terminates provided that findRoute terminates

• But findRoute terminates only if there are no cycles 
in the graph it traverses



Contract for findRoute
Attempt #2

/**
* Create a path from start to finish in G, if
* it exists.
*/
def findRoute(start: String, end: String, 

graph: Graph): 
Option[List[String]]



Reduce to Backtracking Cases

def findRoute(start: String, end: String, 
graph: Graph): Option[List[String]] = {

if (start == end) Some(List(end))
else for (route <- routeFromOrigins(graph(start), end, graph)) 

yield start :: route
}

How does Scala’s for-expression work with an Option?



Recursive Sub-Problems

def routeFromOrigins(origins: List[String], destination: String, 
graph: Graph): Option[List[String]] = {

origins match {
case Nil => None
case origin :: origins => {

findRoute(origin, destination, graph) match {
case None => routeFromOrigins(origins, destination,graph)
case Some(route) => Some(route)

}
}

}
}



Termination

• routeFromOrigins is structurally recursive:

• terminates provided that findRoute terminates

• findRoute terminates only if graph is acyclic



Contract for findRoute
Attempt #3

/**
* Create a path from start to finish in G, if
* it exists. May diverge if graph has a cycle.
*/
def findRoute(start: String, end: String, 

graph: Graph): 
Option[List[String]]



Accumulating 
Knowledge



Accumulating Knowledge

• Remember visited nodes to prevent infinite regress

• Pass this to recursive calls via an accumulator



Reduce to Backtracking

def findRoute(start: String, end: String, graph: Graph, 
visited: List[String] = Nil): 

Option[List[String]] = {
if (start == end) Some(List(end))
else if (visited contains start) None
else for (route <- routeFromOrigins(graph(start), end, graph, 

start :: visited)) 
yield start :: route

}



Reduce to Backtracking

def routeFromOrigins(origins: List[String], destination: String, 
graph: Graph, visited: List[String]): 

Option[List[String]] = {
origins match {
case Nil => None
case origin :: origins => {
findRoute(origin, destination, graph, visited) match {
case None => routeFromOrigins(origins, destination, 

graph, origin :: visited)
case Some(route) => Some(route)

}
}

}
}

Can we still guarantee termination
without this cons operation?



Accumulators

• An accumulator parameter allows us to “remember” 
knowledge from one recursive call to another

• Often essential for correctness in generative recursion

• Useful for saving space in structural recursion

• Also critical for supporting tail-calls in many cases



Using Accumulators for 
Structural Recursion

• Let us define a function fromOrigin, which:

• Takes a list of Int values, with each value denoting a 
relative distance to the point to its left

• Returns a list of Int values denoting the absolute 
distances to the origin



fromOrigin Example

results in the following output list

2 3 5 2 8 …

2 5 10 12 20 …

Applying fromOrigin to the following input list



Defining fromOrigin

def fromOrigin(xs: List[Int]): List[Int] = {
xs match {
case Nil => Nil
case x :: xs => x :: fromOrigin(xs).map(_+x)

}
}



Defining fromOrigin

def fromOrigin(xs: List[Int]): List[Int] = {
xs match {
case Nil => Nil
case x :: xs =>
x :: { for (y <- fromOrigin(xs)) yield y+x }

}
}

How many steps does it take to compute an application
of fromOrigin, in comparison to the length of the list?



Cost of fromOrigin
fromOrigin(List(2,3,5,2,8)) ↦

List(2,3,5,2,8) match {
case Nil => Nil
case x :: xs => x :: fromOrigin(xs).map(_+x)

} ↦

2 :: (fromOrigin(List(3,5,2,8)) map (_+2)) ↦*
2 :: (3 :: (fromOrigin(List(5,2,8) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(5, 7, 15) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(8, 10, 18)) map(_+2)) ↦*
2 :: (List(5, 10, 12, 20)) ↦*
List(2, 5, 10, 12, 20)



Cost of fromOrigin

• Each recursive call map over the argument list

• which takes n steps for a list of length n



Big O Notation

We say:

meaning there is a constant k and some value x0 such that



Big O Notation

Typically the part:

is implicit

Effectively, we are defining equivalence classes of 
functions



Accumulating Distance to the 
Origin

We could reduce the time taken by instead accumulating 
the distance to the origin in a parameter



Accumulating Distance to the 
Origin

def fromOriginAcc(xs: List[Int]) = {
def inner(xs: List[Int], fromOrigin: Int): List[Int] = {
xs match {
case Nil => Nil
case x :: xs => {
val xToOrigin = x + fromOrigin
xToOrigin :: inner(xs, xToOrigin)

}
}

}
inner(xs, 0)

}



Guidelines for Using 
Accumulators in Functions

• Start with the standard design recipes!

• Add an accumulator only after the initial design attempt



Guidelines for Using 
Accumulators in Functions

• Recognize the benefit of having an accumulator

• Understand what the accumulator denotes



• If the function is structurally recursive and uses an 
auxiliary function, consider an accumulator

• Study hand evaluations to see if an accumulator 
helps in reducing time or space costs

Recognizing the Benefit of an 
Accumulator



Recognizing the Benefit of an 
Accumulator

def invert[T](xs: List[T]): List[T] = {
xs match {
case Nil => Nil
case x :: xs => makeLastItem(x, invert(xs))

}
}

def makeLastItem[T](x: T, xs: List[T]): List[T] = {
xs match {
case Nil => List(x)
case y :: ys => y :: makeLastItem(x, ys)

}
}



Recognizing the Benefit of an 
Accumulator

• there is nothing for invert to forget

• consider accumulating the items walked over



Recognizing the Benefit of an 
Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case Nil => …
case y :: ys => … inner(… ys … y … accumulator …)

}
}
inner(xs, Nil)

}



Recognizing the Benefit of an 
Accumulator

• accumulator must stand for a list

• it could stand for all elements that precede xs



Recognizing the Benefit of an 
Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case Nil => …
case y :: ys => … inner(… ys … y :: accumulator)

}
}
inner(xs, Nil)

}



Recognizing the Benefit of an 
Accumulator

• Now it is clear that the accumulator contains all the 
elements that precede xs in reverse order



Recognizing the Benefit of an 
Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case Nil => accumulator
case y :: ys => inner(ys, y :: accumulator)

}
}
inner(xs, Nil)

}



Recognizing the Benefit of an 
Accumulator

• The key step in the design process is to establish the 
invariant that describes the relationship between the 
accumulator and the parameters of a function

• Establish appropriate accumulator invariant is an art 
that takes practice



Recognizing the Benefit of an 
Accumulator

def sum1(xs: List[Int]): Int = {
xs match {
case Nil => 0
case y :: ys => y + sum1(ys)

}
}



An Accumulator for Sum

• walking over elements of a list to return their sum

• obvious thing to accumulate is the the sum so far



An Accumulator for Sum

def sum2(xs: List[Int]): Int = {
def inner(xs: List[Int], accumulator: Int): Int = {
xs match {
case Nil => accumulator
case y :: ys => inner(ys, y + accumulator)

}
}
inner(xs, 0)

}



Reducing Naïve Sum

sum1(List(5, 3, 7, 9)) ↦*
5 + sum1(List(3, 7, 9)) ↦*
5 + 3 + sum1(List(7, 9)) ↦*
5 + 3 + 7 + sum1(List(9)) ↦*

5 + 3 + 7 + 9 + sum1(List()) ↦*
5 + 3 + 7 + 9 + 0 ↦
8 + 7 + 9 + 0 ↦
15 + 9 + 0 ↦
24 + 0 ↦

24 



Reducing Accumulated Sum

sum2(List(5, 3, 7, 9)) ↦*
inner(List(5, 3, 7, 9), 0) ↦*
inner(List(3, 7, 9), 5 + 0) ↦*
inner(List(3, 7, 9), 5) ↦*
inner(List(7, 9), 5 + 3) ↦*
inner(List(7, 9), 8) ↦*
inner(List(9), 7 + 8) ↦*
inner(List(9), 15) ↦*

inner(List(), 9 + 15) ↦*
inner(List(), 24) ↦*

24



An Accumulator for Sum

• The key advantage of our accumulator version of sum is 
space

• The advantage is not a matter as to whether the space 
is used on the stack or in the heap as an argument!

• The ability to reduce the sum as we recur is the primary 
cause of space savings



This Would Not Save Space

def sum3(xs: List[Int]): Int = {
def inner(xs: List[Int], accumulator: () => Int): Int = {

xs match {
case Nil => accumulator()
case y :: ys => inner(ys, () => (y + accumulator()))

}
}
inner(xs, () => 0)

}



Thoughts on Accumulators

• Accumulator-based functions are not always faster

• Accumulator-based factorial tends to be slower

• Accumulator-based functions do not always take less 
space



Thoughts on Accumulators

• Accumulator-based functions are usually harder to 
understand

• Programmers new to functional programming are 
seduced by them because sometimes they can be 
similar to loops



Thoughts on Accumulators

• Use accumulators judiciously and understand the 
benefits you are trying to achieve


