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Announcement

Midterm exam is on Tuesday (Oct 23)

in DH 1075 (this room) from 7pm – 10pm
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Call-By-Value
and

Call-By-Name
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Call-By-Value

• Thus far, the evaluation semantics we have studied 
(both with the substitution and environment models) is 
known as call-by-value:

• To evaluate a function application, we first evaluate 
the arguments and then evaluate the function body
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Call-By-Value

• We have seen several “special forms” where this 
evaluation semantics is not what we want:

&&     ||     if-else
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Call-By-Value

• We could delay evaluation in these cases by wrapping 
arguments in function literals that take no parameters

def myOr(left: Boolean, right: () => Boolean) =
if (left) true
else right()
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Call-By-Value

• We could delay evaluation in these cases by wrapping 
arguments in function literals that take no parameters

• Functions that take no arguments are referred to as 
thunks

myOr(true, () => 1/0 == 2) ↦ true
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Call-By-Name

• Scala provides a way that we can pass arguments as 
thunks without having to wrap them explicitly

We simply leave off the parentheses 
in the parameter’s type

def myOr(left: Boolean, right: => Boolean) =
if (left) true
else right
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Call-By-Name

• Now we can call our function without wrapping the 
second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that the 
argument is evaluated in a function 

myOr(true, 1/0 == 2) ↦ true
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Call-By-Name

• We can use by-name parameters to define new control 
abstractions:

def myAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError
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Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in braces 
instead of parentheses

myAssert {
2 + 2 == 4

}
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Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in braces 
instead of parentheses

myAssert {
def double(n: Int) = 2 * n
double(2) == 4

}
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Scala Immutable 
Collections
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Immutable Lists

• Behave much like the lists we have defined in class

• Lists are covariant

• The empty list is written Nil

• Nil extends List[Nothing]
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Immutable Lists

• The list constructor takes a variable number of 
arguments:

List(1,2,3,4,5,6)
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Immutable Lists

• Non-empty lists are built from Nil and Cons (written as 
the right-associative operator ::)

1 :: 2 :: 3 :: 4 :: Nil
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List Operations

• head returns the first element

• tail returns a list of elements but the first

• isEmpty returns true if the list is empty

• Many of the methods we have defined are available on 
the built-in lists
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FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(zero /: xs)(op)

(xs :\ zero)(op)
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FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(xs foldLeft zero)(op)

(xs foldRight zero)(op)
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FoldLeft and FoldRight
Written as Methods

• foldLeft:

• foldRight:

xs.foldLeft(zero) { op }

xs.foldRight(zero) { op }
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SortWith

List(1,2,3,4,5,6) sortWith (_ > _)
↦

List(6, 5, 4, 3, 2, 1)

21



Range

List.range(1,5)
↦

List(1, 2, 3, 4)
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Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0) 
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Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
List(0,0,0),
List(0,0,0)) 
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Tabulating Lists

List.tabulate(3,3) { (m,n) =>
if (m == n) 1 else 0

}
↦
List(List(1,0,0),

List(0,1,0),
List(0,0,1)) 
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Immutable Sets
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Immutable Sets

• Sets are unordered, unrepeated collections of elements

• Set[T]  extends the function type T ⇒ Boolean

• Sets are parametric and invariant in their element type
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Why in-variant?



Set Factory

Set(1,2,3,4,5)

28



Set Element Addition

Set(1,2,3) + 4 ↦
Set(1,2,3,4)
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Set Element Subtraction

Set(1,2,3) - 2 ↦
Set(1,3)
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Set(1,2,3) - 4 ↦
Set(1,2,3)



Set Intersection

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)
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Set(1,2,3) intersect Set(2,4,5,3) ↦
Set(2,3)



Set Union

Set(1,2,3) | Set(2,4,5) ↦
Set(1,2,3,4,5)
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Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)

Set(1,2,3) union Set(2,4,5) ↦
Set(1,2,3,4,5)



Set Difference
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Set(1,2,3) -- Set(2,4,5,3) ↦
Set(1)

Set(1,2,3) diff Set(2,4,5,3) ↦
Set(1)



Set Cardinality

Set(1,2,3).size ↦
3
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Set Membership

Set(1,2,3).contains(2) ↦
true

Set(1,2,3)(2) ↦
true
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The apply method on sets is 
equivalent to the contains method.



Immutable Maps
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Immutable Maps

• Maps are collections of key/value pairs

• They are parametric in both the key and value type

• Covariant in their value type

• Invariant in their key type

37

Why in-variant?



The -> Operator

• The infix operator -> returns a pair of its arguments:

• Note: Scala also allows Unicode Operators, and the infix 
“→” operator is one such example:

1 -> 2
↦

(1,2)

1 → 2
↦

(1,2)
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The → Operator is Left 
Associative

> 1 → 2 → 3 → 4
res8: (((Int, Int), Int), Int) = (((1,2),3),4)
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The Map Factory

Map("a" → 1, "b" → 2, "c" → 3) 
↦

Map(a -> 1, b -> 2, c -> 3)
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Map Addition

Map("a" → 1, "b" → 2, "c" → 3) + ("d" → 4) 
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)
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Map Operations

The operators/methods are defined in the expected way:

• -

• ++

• --

• size
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Map Membership

Map("a" → 1, "b" → 2, "c" → 3).contains("b")
↦

true
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Map Lookup

Map("a" → 1, "b" → 2, "c" → 3)("c")
↦
3
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Map("a" → 1, "b" → 2, "c" → 3).get("c")
↦

Some(3)



Map Keys

Map("a" → 1, "b" → 2, "c" → 3).keys
↦

Set(a, b, c): Iterable[String]

45

Map("a" → 1, "b" → 2, "c" → 3).keySet
↦

Set(a, b, c): Set[String]



Map Values

Map("a" → 1, "b" → 2, "c" → 3).values
↦

Set(1,2,3)
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Map Empty

Map("a" → 1, "b" → 2, "c" → 3).isEmpty
↦

false
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