
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 18, 2018

Announcement

Midterm exam is on Tuesday (Oct 23)

in DH 1075 (this room) from 7pm – 10pm

2

Call-By-Value
and

Call-By-Name

3

Call-By-Value

• Thus far, the evaluation semantics we have studied
(both with the substitution and environment models) is
known as call-by-value:

• To evaluate a function application, we first evaluate
the arguments and then evaluate the function body

4

Call-By-Value

• We have seen several “special forms” where this
evaluation semantics is not what we want:

&& || if-else

5

Call-By-Value

• We could delay evaluation in these cases by wrapping
arguments in function literals that take no parameters

def myOr(left: Boolean, right: () => Boolean) =
if (left) true
else right()

6

Call-By-Value

• We could delay evaluation in these cases by wrapping
arguments in function literals that take no parameters

• Functions that take no arguments are referred to as
thunks

myOr(true, () => 1/0 == 2) ↦ true

7

Call-By-Name

• Scala provides a way that we can pass arguments as
thunks without having to wrap them explicitly

We simply leave off the parentheses
in the parameter’s type

def myOr(left: Boolean, right: => Boolean) =
if (left) true
else right

8

Call-By-Name

• Now we can call our function without wrapping the
second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that the
argument is evaluated in a function

myOr(true, 1/0 == 2) ↦ true

9

Call-By-Name

• We can use by-name parameters to define new control
abstractions:

def myAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

10

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in braces
instead of parentheses

myAssert {
2 + 2 == 4

}

11

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in braces
instead of parentheses

myAssert {
def double(n: Int) = 2 * n
double(2) == 4

}

12

Scala Immutable
Collections

13

Immutable Lists

• Behave much like the lists we have defined in class

• Lists are covariant

• The empty list is written Nil

• Nil extends List[Nothing]

14

Immutable Lists

• The list constructor takes a variable number of
arguments:

List(1,2,3,4,5,6)

15

Immutable Lists

• Non-empty lists are built from Nil and Cons (written as
the right-associative operator ::)

1 :: 2 :: 3 :: 4 :: Nil

16

List Operations

• head returns the first element

• tail returns a list of elements but the first

• isEmpty returns true if the list is empty

• Many of the methods we have defined are available on
the built-in lists

17

FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(zero /: xs)(op)

(xs :\ zero)(op)

18

FoldLeft and FoldRight
Written as Operators

• foldLeft:

• foldRight:

(xs foldLeft zero)(op)

(xs foldRight zero)(op)

19

FoldLeft and FoldRight
Written as Methods

• foldLeft:

• foldRight:

xs.foldLeft(zero) { op }

xs.foldRight(zero) { op }

20

SortWith

List(1,2,3,4,5,6) sortWith (_ > _)
↦

List(6, 5, 4, 3, 2, 1)

21

Range

List.range(1,5)
↦

List(1, 2, 3, 4)

22

Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0)

23

Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
List(0,0,0),
List(0,0,0))

24

Tabulating Lists

List.tabulate(3,3) { (m,n) =>
if (m == n) 1 else 0

}
↦
List(List(1,0,0),

List(0,1,0),
List(0,0,1))

25

Immutable Sets

26

Immutable Sets

• Sets are unordered, unrepeated collections of elements

• Set[T] extends the function type T ⇒ Boolean

• Sets are parametric and invariant in their element type

27

Why in-variant?

Set Factory

Set(1,2,3,4,5)

28

Set Element Addition

Set(1,2,3) + 4 ↦
Set(1,2,3,4)

29

Set Element Subtraction

Set(1,2,3) - 2 ↦
Set(1,3)

30

Set(1,2,3) - 4 ↦
Set(1,2,3)

Set Intersection

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)

31

Set(1,2,3) intersect Set(2,4,5,3) ↦
Set(2,3)

Set Union

Set(1,2,3) | Set(2,4,5) ↦
Set(1,2,3,4,5)

32

Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)

Set(1,2,3) union Set(2,4,5) ↦
Set(1,2,3,4,5)

Set Difference

33

Set(1,2,3) -- Set(2,4,5,3) ↦
Set(1)

Set(1,2,3) diff Set(2,4,5,3) ↦
Set(1)

Set Cardinality

Set(1,2,3).size ↦
3

34

Set Membership

Set(1,2,3).contains(2) ↦
true

Set(1,2,3)(2) ↦
true

35

The apply method on sets is
equivalent to the contains method.

Immutable Maps

36

Immutable Maps

• Maps are collections of key/value pairs

• They are parametric in both the key and value type

• Covariant in their value type

• Invariant in their key type

37

Why in-variant?

The -> Operator

• The infix operator -> returns a pair of its arguments:

• Note: Scala also allows Unicode Operators, and the infix
“→” operator is one such example:

1 -> 2
↦

(1,2)

1 → 2
↦

(1,2)

38

The → Operator is Left
Associative

> 1 → 2 → 3 → 4
res8: (((Int, Int), Int), Int) = (((1,2),3),4)

39

The Map Factory

Map("a" → 1, "b" → 2, "c" → 3)
↦

Map(a -> 1, b -> 2, c -> 3)

40

Map Addition

Map("a" → 1, "b" → 2, "c" → 3) + ("d" → 4)
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)

41

Map Operations

The operators/methods are defined in the expected way:

• -

• ++

• --

• size

42

Map Membership

Map("a" → 1, "b" → 2, "c" → 3).contains("b")
↦

true

43

Map Lookup

Map("a" → 1, "b" → 2, "c" → 3)("c")
↦
3

44

Map("a" → 1, "b" → 2, "c" → 3).get("c")
↦

Some(3)

Map Keys

Map("a" → 1, "b" → 2, "c" → 3).keys
↦

Set(a, b, c): Iterable[String]

45

Map("a" → 1, "b" → 2, "c" → 3).keySet
↦

Set(a, b, c): Set[String]

Map Values

Map("a" → 1, "b" → 2, "c" → 3).values
↦

Set(1,2,3)

46

Map Empty

Map("a" → 1, "b" → 2, "c" → 3).isEmpty
↦

false

47

