
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 25, 2018



Review:
Call-By-Name

2



Call-By-Value

• We could delay evaluation in these cases by wrapping 
arguments in function literals that take no parameters

def myOr(left: Boolean, right: () => Boolean) =
if (left) true
else right()

3



Call-By-Name

• Scala provides a way that we can pass arguments as 
thunks without having to wrap them explicitly

We simply leave off the parentheses 
in the parameter’s type

def myOr(left: Boolean, right: => Boolean) =
if (left) true
else right

4



Traits

5



Traits

Traits provide a way to factor out common behavior 
among multiple classes and “mix” it in where appropriate

6



Trait Definitions

Syntactically, a trait definition looks like an abstract class 
definition, but with the keyword “trait”:

trait Echo {
def echo(message: String) =
message

}

7



Trait Definitions

• Traits can declare fields and full method definitions

• They must not include constructors

trait Echo {
val language = "Portuguese"
def echo(message: String) =
message

}

8



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

9



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

class Parrot extends Bird with Echo {
def fly() = {
// forget to fly and talk instead
echo("poly wants a cracker")

}
}

10



Using Traits

• Classes “mix in” traits using either the extends or 
with keywords

trait Smart {
def somethingClever() = 
"better a witty fool than a foolish wit"

}

11



Using Traits

• Classes can mix in multiple traits via multiple withs:

class Parrot extends Bird with Echo 
with Smart {
def fly() = {
// forget to fly and talk instead
echo(somethingClever())

}
}

12



Using Traits

Classes can mix in multiple traits via multiple withs:

trait X
case class Foo()

new Foo() with X

13

Must use the new keyword when creating 
a new class instance with a mixin trait



Traits with Self-Types

• We can restrict a trait so that it’s only valid when 
mixed-in with a specific type

• Useful for declaring extra dependencies

trait SmartTalk { this: Echo with Smart =>
def talk() = 
echo(somethingClever)

}

14



Self-Types vs Inheritance

• What is the difference between extends and self-types?

• When would you need to use a self-type
(i.e., an example where extends wouldn’t work)?

15

Whereas extends introduces a subtype relationship, 
self-types only specify a dependency.

Self-typing allows introduction of a cyclic dependency 
between two types. Cyclic subtyping is not possible. 


