
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 30, 2018

Announcements
• Homework 3 is due before class on Thursday

• Midterms were handed back after last class

Combinator Parsing

Combinator Parsing

• Sometimes there are situations in which we need to
process expressions in a small ad-hoc language

• Configuration files for your program

• An input language to your program such as search
queries

Combinator Parsing

• Options:

• Roll your parser

• Requires significant expertise and time

• Use a parser generator (ANTLR)

• Many advantages but also requires learning and
wiring up a new tool into your program

Combinator Parsing

• Another option:

• Define an internal domain-specific language

• Consists of a library of parser combinators:

• Scala functions and operators that serve as the
building blocks for parsers

Combinator Parsing

• Each combinator corresponds to one production of a
context-free grammar

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes definition of a production

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes alternatives

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes zero or more repetitions

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Square brackets [] denote optional occurrences (not used here).

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

A Formal Grammar for
Arithmetic Expressions in BNF

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

factors

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

terms

Arithmetic Expressions

expr ::= term {“+” term | “-” term}.
term ::= factor {“*” factor | “/” factor}.

factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic Expression

2 * 3 + 4 * 5 - 6

expressions

This Grammar Encodes
Operator Precedence

• Expressions contain terms

• Terms contain factors

• Factors only contain expressions if they are enclosed in
parentheses

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A parser for floating point numbers inherited from
JavaTokenParsers.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input,

then its right to whatever remains.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

This combinator is overloaded so that string arguments
are converted to simple parsers that match the string.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input, and returns the result,

unless the left parser fails (then it applies the right parser).

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

A combinator that takes a parser and repeatedly applies it to the
input as many times as possible.

To Convert a Grammar to a
Definition with Parser Combinators

• Every production becomes a method

• The result of each method is Parser[Any]

• Insert the explicit operator ~ between two consecutive symbols of a
production

• Represent repetition with calls to the function rep instead of { }

• Represent repetitions with a separator with calls to the function
repsep

• Represent optional occurrences with opt instead of []

Exercising Our Parser

object ParseExpr extends Arith {
def main(args: Array[String]) = {
println("input: " + args(0))
println(parseAll(expr, args(0)))

}
}

An Example Parse of
Grammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6
input: 2*3+4*5-6
[1.10] parsed: ((2~List((*~3)))~List((+~(4~List((*~5)))), (-~(6~List()))))

An Example Parse of
Ungrammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6)
-bash: syntax error near unexpected token `)'

What is Returned from a
Parser

• Parsers built from strings return the string (if it matches)

• ~ combinator returns both results
• as elements of a case class named ~
• (with a toString that places the ~ infix)

• | combinator returns the result of whichever succeeds

• rep operator returns a list of its results

• opt operator returns an Option of its result

Transforming the Output of a
Parser

• The ^^ combinator transforms the result of a parser:

• Let P be a parser that returns a result of type R

• Let f be a function that takes an argument of type R

• Returns a parser that applies P, takes the result and
applies f to it

P^^f

Transforming the Output of a
Parser

floatingPointNumber ^^ (_.toDouble)

Transforming the Output of a
Parser

“true” ^^ (x => true)

“true” ^^^ true

Parsing JSON

• Many processes need to exchange complex data with
other processes (often over a network)

• We need a portable way to represent the structure of
data so that processes can conveniently send data
amongst themselves

• One popular alternative is JSON

• the Javascript Object Notation

Parsing JSON

• A JSON object is a sequence of members separated by
commas and enclosed in braces

• Each member is a string/value pair, separated by a
colon

• A JSON array is a sequence of values separated by
commas and enclosed in square brackets

JSON Example
{
“address book” : {
“name” : “Eva Luate”,
“address” : {
“street” : “6100 Main St”
“city” : “Houston TX”,
“zip” : 77005

},
“phone numbers”: [
“555 555-5555”,
“555 555-6666”

]
}

}

A Simple JSON Parser

class JSON extends JavaTokenParsers {
def value: Parser[Any] = {

obj | arr | stringLiteral |
floatingPointNumber | "null" | "true" | "false"

}
def obj: Parser[Any] = "{"~repsep(member, ",")~"}"

def arr: Parser[Any] = "["~repsep(value, ",")~"]"

def member: Parser[Any] = stringLiteral~":"~value
}

Mapping JSON to Scala

• We would like to parse JSON objects into Scala objects as follows:

• A JSON object is represented as a Map[String,Any]

• A JSON array is represented as a List[Any]

• A JSON string is represented as a String

• A JSON numeric literal is represented as a Double

• The values true, false, null are represented as
corresponding Scala values

Definition of Class ~

case class ~[+A, + B](x: A, y: B) {
override def toString = "(" + x + "~" + y + ")"

}

Redefining Member

def member: Parser[(String, Any)] = stringLiteral~":"~value ^^
{ case n~":"~v => (n,v) }

Redefining obj (Attempt 1)

def obj: Parser[Map[String, Any]] = "{"~repsep(member, ",")~"}" ^^
{ case "{"~ms~"}" => Map() ++ ms }

Redefining obj

• We can further improve our definition of obj by using the
following parser combinators:

~> like ~ except that the left result is thrown out

<~ like ~ except that the right result is thrown out

Redefining obj (Attempt 2)

def obj: Parser[Map[String, Any]] =
"{"~>repsep(member, ",")<~"}" ^^ (Map() ++ _)

Complete JSON Parser with
Mapping

class JSON2 extends JavaTokenParsers {
def obj: Parser[Map[String, Any]] = "{"~>repsep(member, ",")<~"}" ^^
(Map() ++ _)

def arr: Parser[Any] = "["~>repsep(value, ",")<~"]"

def member: Parser[(String, Any)] =
stringLiteral~":"~value ^^
{ case n~":"~v => (n,v) }

def value: Parser[Any] = {
obj |
arr |
stringLiteral |
floatingPointNumber ^^ (_.toDouble) |
"null" ^^^ null |
"true" ^^^ true |
"false" ^^^ false

}
}

Parsing a File
object JSONParseExpr extends JSON2 {
def main(args: Array[String]) = {
val f = Source.fromFile(args(0))
try {
println("input: " + args(0))
println(parseAll(value, f.reader))

}
finally {
f.close

}
}

}

Parsing a File

$ scala edu.rice.cs.comp311.lectures.lecture22.JSONParseExpr sample.json
input: sample.json
[16.1] parsed: Map("address book" -> Map("name" -> "Eva Luate", "address" ->
Map("street" -> "6100 Main St", "city" -> "Houston TX", "zip" -> 77005.0), "phone
numbers" -> List("555 555-5555", "555 555-6666")))

