
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 7, 2017

Streams

• a form of “lazy” sequence

• inspired by signal-processing (e.g. digital circuits)

• Components accept streams of signals as input,
transform their input, and produce streams of signals
as outputs

2

Stream Class

abstract class Stream[+T] {
def head: T
def tail: Stream[T]
def map[S](f: T => S): Stream[S]
def flatMap[S](f: T => Stream[S]): Stream[S]
def ++[S >: T](that: Stream[S]): Stream[S]
def withFilter(f: T => Boolean): Stream[T]
def nth(n: Int): T

}

3

Streams

case object Empty extends Stream[Nothing] {
def head = throw new NoSuchElementException
def tail = throw new NoSuchElementException
def map[S](f: Nothing => S) = Empty
def flatMap[S](f: Nothing => Stream[S]) = Empty
def ++[S >: Nothing](that: Stream[S]) = that
def withFilter(f: Nothing => Boolean) = Empty
def nth(n: Int) = throw new NoSuchElementException

}

4

Streams

class Cons[+T](val head: T, lazyTail: => Stream[T])
extends Stream[T] {
def tail = lazyTail
def map[S](f: T => S): Stream[S] =
ConsStream(f(head), tail map f)

def flatMap[S](f: T => Stream[S]): Stream[S] =
f(head) ++ tail.flatMap(f)

def ++[S >: T](that: Stream[S]): Stream[S] =
ConsStream(head, tail ++ that)

…
}

5

You can’t actually use by-name parameters with case classes, but
pretend this works for now. We’ll cover how this would actually be

implemented when we talk about companion objects.

Streams

case class ConsStream[+T](head: T, lazyTail: => Stream[T])
extends Stream[T] {
…
def withFilter(f: T => Boolean) = {
if (f(head)) ConsStream(head, tail.withFilter(f))
else tail.withFilter(f)

}
def nth(n: Int) = {
require (n >= 0)
if (n == 0) head
else tail.nth(n - 1)

}
}

6

Streams

def range(low: Int, high: Int): Stream[Int] =
if (low > high) NilStream
else ConsStream(low, range(low + 1, high))

7

Streams

def intsFrom(n: Int): Stream[Int] =
ConsStream(n, intsFrom(n + 1))

8

Streams

val nats = intsFrom(0)

9

Streams

def fibGen(a: Int, b: Int): Stream[Int] =
ConsStream(a, fibGen(b, a + b))

10

Streams

val fibs = fibGen(0, 1)

11

Streams

def push(x: Int, ys: Stream[Int]) = {
ConsStream(x, ys)

}

12

Streams

def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))

13

A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] =
ConsStream(stream.head,

sieve(stream.tail withFilter
(x => !(isDivisible

(x, stream.head)))))

14

A Stream of Primes

val primes = sieve(intsFrom(2))

15

A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7

16

Streams

def add(xs: Stream[Int],
ys: Stream[Int]) :Stream[Int] = {

(xs, ys) match {
case (NilStream, _) => ys
case (_, NilStream) => xs
case (ConsStream(x,f), ConsStream(y,g)) =>
ConsStream(x + y, add(f(), g()))

}
}

17

Streams

def ones(): Stream[Int] = ConsStream(1, ones)

18

Alternative Definition of the
Stream of Natural Numbers

def nats(): Stream[Int] =
ConsStream(0, add(ones, nats))

19

Alternative Definition of the
Fibonacci Stream

def fibs(): Stream[Int] =
ConsStream(0,

ConsStream(1,
add(fibs.tail, fibs)))

20

Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
stream map (_ * c)

def powersOfTwo(): Stream[Int] =
ConsStream(1, scaleStream(2, powersOfTwo))

21

Alternative Definition of the
Stream of Primes

def primes() =
ConsStream(2, intsFrom(3) withFilter isPrime)

def isPrime(n: Int): Boolean = {
def sieve(next: Stream[Int]): Boolean = {

if (square(next.head) > n) true
else if (isDivisible(n, next.head)) false
else sieve(next.tail)

}
sieve(primes)

}

22

Numeric Integration with
Streams

23

Numeric Integration with
Streams

def integral(integrand: Stream[Double],
init: Double,
dt: Double) = {

def inner(): Stream[Double] = {
ConsStream(init,

addStreams(scaleStream(dt,
integrand),

inner))
}
inner

}

24

Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]):
Stream[Int] = {
ConsStream(balance,

withdraw(balance - amounts.head,
amounts.tail))

}

25

Discussion
• Our modeling of a bank account is a purely functional

program without state

• Nevertheless:

• If a user provides the stream of withdrawals, and

• The stream of balances is displayed as outputs,

• The system will behave from a user’s perspective as a
stateful system

26

Discussion

• The key to understanding this paradox is that the
“state” is in the world:

• The user/bank system is stateful and provides the
input stream

• If we could “step outside” our own perspective in
time, we could view our withdrawal stream as
another stateless stream of transactions

27

Changing the State of
Variables

28

Changing the State of
Variables

• Thus far, we have focused solely on purely functional
programs

• This approach has gotten us remarkably far

• Sometimes, it is difficult to structure a program without
some notion of stateful variables:

• I/O, GUIs

• Modeling a stateful system in the world

29

Assignment and Local State

• We view the world as consisting of objects with state
that changes over time

• It is often natural to model physical systems with
computational objects with state that changes over
time

30

Assignment and Local State

• If we choose to model the flow of time in the system by
elapsed time in the computation, we need a way to
change the state of objects as a program runs

• If we choose to model state using symbolic names in
our program, we need an assignment operator to allow
for changing the value associated with a name

31

Modeling an Address Book

class AddressBook() {
val addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
…

}

def lookup(name: String) = addresses(name)
}

32

Modeling an Address Book

class AddressBook() {
var addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
addresses = addresses + (name -> address)

}

def lookup(name: String) = addresses(name)
}

You now saw var; you are still not allowed to use it :)
33

Sameness and Change

• In the context of assignment, our notion of equality
becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook

34

Sameness and Change

• Effectively assignment forces us to view names as
referring not to values, but to places that store values

35

Referential Transparency

• The notion that equals can be substituted for equals in
an expression without changing the value of the
expression is known as referential transparency

• Referential transparency is one of the distinguishing
aspects of functional programming

• It is lost as soon as we introduce mutation

36

Referential Transparency

• Without referential transparency, the notion of what it
means for two objects to be “the same” is far more
difficult to explain

• One approach:

• Modify one object and see whether the other object
has changed in the same way

37

Referential Transparency

• One approach:

• Modify one object and see whether the other object
has changed in the same way

• But that involves observing a single object twice

• How do we know we are observing the same object
both times?

38

Pitfalls of Imperative
Programming

The order of updates to variables is a classic source of bugs

39

def factorial(n: Int) = {
var product = 1
var counter = 1
def iter(): Int = {
if (counter > n) {
product

}
else {
product = product * counter
counter = counter + 1
iter()

}
}
iter()

}
What if the order of these updates

were reversed?

40

Review: The Environment
Model of Evaluation

• Environments map names to values

• Every expression is evaluated in the context of an
environment

41

The Environment Model of
Reduction

• To evaluate a name, simply reduce to the value it is
mapped to in the environment

42

The Environment Model of
Reduction

• To evaluate a function, reduce it to a closure, which
consists of two parts:

• The body of the function

• The environment in which the body occurs

43

The Environment Model of
Reduction

• Objects are also modeled as closures

• What is the environment?

• What corresponds to the body of the function?

44

The Environment Model of
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping the
function’s parameters to argument values

• Evaluate the body of the closure in this new
environment

45

Variable Rebinding in the
Environment Model

• The environment model provides us with the necessary
machinery to model stateful variables

• To evaluate a variable v assignment:

• Rebind the value v maps to in the environment in
which the assignment occurs

46

Rebinding a Variable in an
Environment

• The rebound value of v is then used in all subsequent
reductions involving the same environment

• Includes closures involving that environment

• This model of variable assignment pushes the notion of
state out to environments

• The “places” referred to by variables are simply
components of environments

47

Example: Pseudo-Random
Number Generation

• There are many approaches to generating a pseudo-
random stream of Int values

• One common approach is to define a linear congruential
generator (LCG):

• The pseudo-random numbers are the elements of this
recurrence

48

Linear Congruential
Generators

• LCGs can produce generators capable of passing formal
tests for randomness

• The quality of the results is highly dependent on the
initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes

49

A Linear Congruent Generator
(C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2

def inner() = {
seed = (a*seed + b) % m
seed

}
inner

}

50

A Linear Congruent Generator
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g =
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >

51

g()<E> ↦
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >()<E> ↦

52

seed = (a*seed + b) % m
seed,
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >

↦
seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >

↦

53

seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 96542>

↦
96542

And now the environment closing over
generator g binds seed to 96542.

54

