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Streams

• a form of “lazy” sequence

• inspired by signal-processing (e.g. digital circuits)

• Components accept streams of signals as input, 
transform their input, and produce streams of signals 
as outputs
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Stream Class

abstract class Stream[+T] {
def head: T
def tail: Stream[T]
def map[S](f: T => S): Stream[S]
def flatMap[S](f: T => Stream[S]): Stream[S] 
def ++[S >: T](that: Stream[S]): Stream[S]
def withFilter(f: T => Boolean): Stream[T]
def nth(n: Int): T

}
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Streams

case object Empty extends Stream[Nothing] {
def head = throw new NoSuchElementException
def tail = throw new NoSuchElementException
def map[S](f: Nothing => S) = Empty
def flatMap[S](f: Nothing => Stream[S]) = Empty
def ++[S >: Nothing](that: Stream[S]) = that
def withFilter(f: Nothing => Boolean) = Empty
def nth(n: Int) = throw new NoSuchElementException

}
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Streams

class Cons[+T](val head: T, lazyTail: => Stream[T])
extends Stream[T] { 
def tail = lazyTail
def map[S](f: T => S): Stream[S] = 
ConsStream(f(head), tail map f)

def flatMap[S](f: T => Stream[S]): Stream[S] = 
f(head) ++ tail.flatMap(f)

def ++[S >: T](that: Stream[S]): Stream[S] = 
ConsStream(head, tail ++ that)

…
}
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You can’t actually use by-name parameters with case classes, but 
pretend this works for now. We’ll cover how this would actually be 

implemented when we talk about companion objects.



Streams

case class ConsStream[+T](head: T, lazyTail: => Stream[T]) 
extends Stream[T] {
…
def withFilter(f: T => Boolean) = {
if (f(head)) ConsStream(head, tail.withFilter(f))
else tail.withFilter(f)

}
def nth(n: Int) = {
require (n >= 0)
if (n == 0) head
else tail.nth(n - 1)

}
}
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Streams

def range(low: Int, high: Int): Stream[Int] = 
if (low > high) NilStream
else ConsStream(low, range(low + 1, high))
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Streams

def intsFrom(n: Int): Stream[Int] = 
ConsStream(n, intsFrom(n + 1))
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Streams

val nats = intsFrom(0)
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Streams

def fibGen(a: Int, b: Int): Stream[Int] = 
ConsStream(a, fibGen(b, a + b))
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Streams

val fibs = fibGen(0, 1)
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Streams

def push(x: Int, ys: Stream[Int]) = {
ConsStream(x, ys)

}
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Streams

def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))
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A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] = 
ConsStream(stream.head, 

sieve(stream.tail withFilter
(x => !(isDivisible

(x, stream.head)))))
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A Stream of Primes

val primes = sieve(intsFrom(2))
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A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7
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Streams

def add(xs: Stream[Int], 
ys: Stream[Int]) :Stream[Int] = {

(xs, ys) match {
case (NilStream, _) => ys
case (_, NilStream) => xs
case (ConsStream(x,f), ConsStream(y,g)) => 
ConsStream(x + y, add(f(), g()))

}
}
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Streams

def ones(): Stream[Int] = ConsStream(1, ones)
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Alternative Definition of the 
Stream of Natural Numbers

def nats(): Stream[Int] = 
ConsStream(0, add(ones, nats))
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Alternative Definition of the 
Fibonacci Stream

def fibs(): Stream[Int] = 
ConsStream(0, 

ConsStream(1,
add(fibs.tail, fibs)))
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Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] = 
stream map (_ * c)

def powersOfTwo(): Stream[Int] = 
ConsStream(1, scaleStream(2, powersOfTwo))
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Alternative Definition of the 
Stream of Primes

def primes() = 
ConsStream(2, intsFrom(3) withFilter isPrime)

def isPrime(n: Int): Boolean = {
def sieve(next: Stream[Int]): Boolean = {

if (square(next.head) > n) true
else if (isDivisible(n, next.head)) false
else sieve(next.tail)

}
sieve(primes)

}
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Numeric Integration with 
Streams
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Numeric Integration with 
Streams

def integral(integrand: Stream[Double],
init: Double,
dt: Double) = {

def inner(): Stream[Double] = {
ConsStream(init, 

addStreams(scaleStream(dt,  
integrand), 

inner))
}
inner

}
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Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]): 
Stream[Int] = {
ConsStream(balance, 

withdraw(balance - amounts.head, 
amounts.tail))

}
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Discussion
• Our modeling of a bank account is a purely functional 

program without state

• Nevertheless:

• If a user provides the stream of withdrawals, and

• The stream of balances is displayed as outputs,

• The system will behave from a user’s perspective as a 
stateful system
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Discussion

• The key to understanding this paradox is that the 
“state” is in the world: 

• The user/bank system is stateful and provides the 
input stream

• If we could “step outside” our own perspective in 
time, we could view our withdrawal stream as 
another stateless stream of transactions
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Changing the State of 
Variables
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Changing the State of 
Variables

• Thus far, we have focused solely on purely functional 
programs

• This approach has gotten us remarkably far

• Sometimes, it is difficult to structure a program without 
some notion of stateful variables:

• I/O, GUIs

• Modeling a stateful system in the world
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Assignment and Local State

• We view the world as consisting of objects with state 
that changes over time

• It is often natural to model physical systems with 
computational objects with state that changes over 
time
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Assignment and Local State

• If we choose to model the flow of time in the system by 
elapsed time in the computation, we need a way to 
change the state of objects as a program runs

• If we choose to model state using symbolic names in 
our program, we need an assignment operator to allow 
for changing the value associated with a name
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Modeling an Address Book

class AddressBook() {
val addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
…

}

def lookup(name: String) = addresses(name)
}
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Modeling an Address Book

class AddressBook() {
var addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
addresses = addresses + (name -> address)

}

def lookup(name: String) = addresses(name)
}

You now saw var; you are still not allowed to use it :)
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Sameness and Change

• In the context of assignment, our notion of equality 
becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook
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Sameness and Change

• Effectively assignment forces us to view names as 
referring not to values, but to places that store values
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Referential Transparency

• The notion that equals can be substituted for equals in 
an expression without changing the value of the 
expression is known as referential transparency

• Referential transparency is one of the distinguishing 
aspects of functional programming

• It is lost as soon as we introduce mutation

36



Referential Transparency

• Without referential transparency, the notion of what it 
means for two objects to be “the same” is far more 
difficult to explain

• One approach:

• Modify one object and see whether the other object 
has changed in the same way

37



Referential Transparency

• One approach:

• Modify one object and see whether the other object 
has changed in the same way

• But that involves observing a single object twice

• How do we know we are observing the same object 
both times?
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Pitfalls of Imperative 
Programming

The order of updates to variables is a classic source of bugs
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def factorial(n: Int) = {
var product = 1
var counter = 1
def iter(): Int = {
if (counter > n) {
product

}
else {
product = product * counter
counter = counter + 1
iter()

}
}
iter()

}
What if the order of these updates

were reversed?
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Review: The Environment 
Model of Evaluation

• Environments map names to values

• Every expression is evaluated in the context of an 
environment
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The Environment Model of 
Reduction

• To evaluate a name, simply reduce to the value it is 
mapped to in the environment
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The Environment Model of 
Reduction

• To evaluate a function, reduce it to a closure, which 
consists of two parts:

• The body of the function

• The environment in which the body occurs
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The Environment Model of 
Reduction

• Objects are also modeled as closures

• What is the environment? 

• What corresponds to the body of the function?
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The Environment Model of 
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping the 
function’s parameters to argument values

• Evaluate the body of the closure in this new 
environment
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Variable Rebinding in the 
Environment Model

• The environment model provides us with the necessary 
machinery to model stateful variables

• To evaluate a variable v assignment:

• Rebind the value v maps to in the environment in 
which the assignment occurs
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Rebinding a Variable in an 
Environment

• The rebound value of v is then used in all subsequent 
reductions involving the same environment

• Includes closures involving that environment

• This model of variable assignment pushes the notion of 
state out to environments

• The “places” referred to by variables are simply 
components of environments
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Example: Pseudo-Random 
Number Generation

• There are many approaches to generating a pseudo-
random stream of Int values

• One common approach is to define a linear congruential 
generator (LCG):

• The pseudo-random numbers are the elements of this 
recurrence
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Linear Congruential 
Generators

• LCGs can produce generators capable of passing formal 
tests for randomness

• The quality of the results is highly dependent on the 
initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes
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A Linear Congruent Generator 
(C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2

def inner() = {
seed = (a*seed + b) % m
seed

}
inner

}
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A Linear Congruent Generator 
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g = 
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >
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g()<E> ↦
< def inner() = {

seed = (a*seed + b) % m
seed

} ,
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 >()<E> ↦
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seed = (a*seed + b) % m
seed, 
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 > 

↦
seed = (48271*2 + 0) % Int.MaxValue
seed, 
< val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 2 > 

↦
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seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 96542> 

↦
96542

And now the environment closing over
generator g binds seed to 96542.
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