
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 1, 2018

Announcements
• Homework 3 was due before class Today

• Homework 4 will be posted later this evening,
and is due on Thursday, November 15th

Streams

• a form of “lazy” sequence

• inspired by signal-processing (e.g. digital circuits)

• Components accept streams of signals as input,
transform their input, and produce streams of signals
as outputs

3

Stream Class

abstract class Stream[+T] {
def head: T
def tail: Stream[T]
def map[S](f: T => S): Stream[S]
def flatMap[S](f: T => Stream[S]): Stream[S]
def ++[S >: T](that: Stream[S]): Stream[S]
def withFilter(f: T => Boolean): Stream[T]
def nth(n: Int): T

}

4

Streams

case object Empty extends Stream[Nothing] {
def head = throw new NoSuchElementException
def tail = throw new NoSuchElementException
def map[S](f: Nothing => S) = Empty
def flatMap[S](f: Nothing => Stream[S]) = Empty
def ++[S >: Nothing](that: Stream[S]) = that
def withFilter(f: Nothing => Boolean) = Empty
def nth(n: Int) = throw new NoSuchElementException

}

5

Streams

case class Cons[+T](head: T, tail: => Stream[T])
extends Stream[T] {
def map[S](f: T => S): Stream[S] =
Cons(f(head), tail map f)

def flatMap[S](f: T => Stream[S]): Stream[S] =
f(head) ++ tail.flatMap(f)

def ++[S >: T](that: Stream[S]): Stream[S] =
Cons (head, tail ++ that)

…
}

6

You can’t actually use by-name parameters with case classes, but
pretend this works for now. We’ll cover how this would actually be

implemented when we talk about companion objects.

Streams

case class Cons[+T](head: T, lazyTail: => Stream[T])
extends Stream[T] {
…
def withFilter(f: T => Boolean) = {
if (f(head)) Cons(head, tail.withFilter(f))
else tail.withFilter(f)

}
def nth(n: Int) = {
require (n >= 0)
if (n == 0) head
else tail.nth(n - 1)

}
}

7

Streams

def range(low: Int, high: Int): Stream[Int] =
if (low > high) Empty
else Cons(low, range(low + 1, high))

8

Streams

def intsFrom(n: Int): Stream[Int] =
Cons(n, intsFrom(n + 1))

9

Streams

val nats = intsFrom(0)

10

Streams

def fibGen(a: Int, b: Int): Stream[Int] =
Cons(a, fibGen(b, a + b))

11

Streams

val fibs = fibGen(0, 1)

12

Streams

def push(x: Int, ys: Stream[Int]) = {
Cons(x, ys)

}

13

Streams

def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))

14

A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] =
Cons(stream.head,

sieve(stream.tail withFilter
(x => !(isDivisible

(x, stream.head)))))

15

A Stream of Primes

val primes = sieve(intsFrom(2))

16

A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7

17

Streams

def add(xs: Stream[Int],
ys: Stream[Int]) :Stream[Int] = {

(xs, ys) match {
case (Empty, _) => ys
case (_, Empty) => xs
case (Cons(x,f), Cons(y,g)) =>
Cons(x + y, add(f(), g()))

}
}

18

Streams

def ones(): Stream[Int] = Cons(1, ones)

19

Alternative Definition of the
Stream of Natural Numbers

def nats(): Stream[Int] =
Cons(0, add(ones, nats))

20

Alternative Definition of the
Fibonacci Stream

def fibs(): Stream[Int] =
Cons(0,

Cons(1,
add(fibs.tail, fibs)))

21

Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
stream map (_ * c)

def powersOfTwo(): Stream[Int] =
Cons(1, scaleStream(2, powersOfTwo))

22

Alternative Definition of the
Stream of Primes

def primes() =
Cons(2, intsFrom(3) withFilter isPrime)

def isPrime(n: Int): Boolean = {
def sieve(next: Stream[Int]): Boolean = {

if (square(next.head) > n) true
else if (isDivisible(n, next.head)) false
else sieve(next.tail)

}
sieve(primes)

}

23

Numeric Integration with
Streams

24

Numeric Integration with
Streams

def integral(integrand: Stream[Double],
init: Double,
dt: Double) = {

def inner(): Stream[Double] = {
Cons(init,

addStreams(scaleStream(dt,
integrand),

inner))
}
inner

}

25

Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]):
Stream[Int] = {
Cons(balance,

withdraw(balance - amounts.head,
amounts.tail))

}

26

Discussion
• Our modeling of a bank account is a purely functional

program without state

• Nevertheless:

• If a user provides the stream of withdrawals, and

• The stream of balances is displayed as outputs,

• The system will behave from a user’s perspective as a
stateful system

27

Discussion

• The key to understanding this paradox is that the
“state” is in the world:

• The user/bank system is stateful and provides the
input stream

• If we could “step outside” our own perspective in
time, we could view our withdrawal stream as
another stateless stream of transactions

28

