Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 1, 2018

Announcements

. Homework 3 was due before class Today

. Homework 4 will be posted later this evening,

and is due on Thursday, November 15t

Streams

a form of “lazy” sequence
inspired by signal-processing (e.g. digital circuits)
Components accept streams of signals as input,

transform their input, and produce streams of signals
as outputs

Stream Class

abstract class Stream[+T] {

def
def
def
def
def
def
def

head: T
tail: Stream[T]

map[S](f: T == S): Stream[S]

flatMap[S](f: T => Stream

S]):

++[S >: T](that: Stream[S.

) :

withFilter(f: T => Boolean):

nth(n: Int): T

Stream
Stream[S.

Stream[T.

S]

Streams

case object Empty extends Stream[Nothing] {
def head = throw new NoSuchElementException
def tail = throw new NoSuchElementException
def map[S](f: Nothing => S) = Empty
def flatMap[S](f: Nothing => Stream[S]) = Empty

def ++[S >: Nothing](that: Stream[S]) = that
def withFilter(f: Nothing => Boolean) Empty
def nth(n: Int)

throw new NoSuchElementException

Streams

case class Cons[+T](head: T, tail: => Stream[T])
extends Stream[T] {
def map[S](f: T => S): Stream[S] =
Cons(f(head), tail map f)
def flatMap[S](f: T => Stream[S]):
f(head) ++ tail.flatMap(f)
def ++[S >: T](that: Stream[S]):
Cons (head, tail ++ that)

Stream[S] =

tream[S] =

You can’t actually use by-name parameters with case classes, but
pretend this works for now. We’ll cover how this would actually be
implemented when we talk about companion objects.

6

Streams

case class Cons[+T](head: T, lazyTail: => Stream[T])
extends Stream[T] {

def withFilter(f: T => Boolean) = {
1f (f(head)) Cons(head, tail.withFilter(f))
else tail.withFilter(f)

}

def nth(n: Int) = {
require (n >= 0)
1f (n == 0) head
else tail.nth(n - 1)

}

}

Streams

def range(low: Int, high: Int): Stream[Int] =
1T (low > high) Empty
else Cons(low, range(low + 1, high))

Streams

def intsFrom(n: Int): Stream[Int] =
Cons(n, intsFrom(n + 1))

Streams

val nats = intsFrom(0)

10

Streams

def fibGen(a: Int, b: Int): Stream[Int] =
Cons(a, fibGen(b, a + b))

11

Streams

val fibs = fibGen(0, 1)

12

Streams

def push(x: Int, ys: Stream[Int]) = {
Cons(x, ys)

}

13

Streams

def 1isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(, 7))

14

A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] =
Cons(stream.head,
sieve(stream.tail withFilter
(x => ! (1sDivisible
(x, stream.head)))))

15

A Stream of Primes

val primes = sieve(intsFrom(2))

16

A Stream of Primes

> primes.head
resb5: Int = 2
> primes.nth(1l)
reso: Int = 3
> primes.nth(2)
res/: Int = 5
> primes.nth(3)
resd: Int = 7

17

Streams

def add(xs: Stream[Int],
ys: Stream[Int]) :Stream[Int]

(xs, ys) match {
case (Empty,) => ys
case (, Empty) => XS
case (Cons(x,f), Cons(y,q)) =>
Cons(x + vy, add(f(), g()))

18

= 1

Streams

def ones(): Stream[Int] = Cons(1l, ones)

19

Alternative Definition of the
Stream of Natural Numbers

def nats(): Stream[Int] =
Cons (0@, add(ones, nats))

20

Alternative Definition of the
Fibonacci Stream

def fibs(): Stream[Int] =
Cons (0,
Cons (1,
add(fibs.tail, fibs)))

21

Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
stream map (*)

def powersOfTwo(): Stream[Int] =
Cons(1l, scaleStream(2, powersOfTwo))

22

Alternative Definition of the
Stream of Primes

def primes() =
Cons(2, intsFrom(3) withFilter 1sPrime)

def 1sPrime(n: Int): Boolean = {
def sieve(next: Stream[Int]): Boolean = {
1f (square(next.head) > n) true
else 1f (1isDivisible(n, next.head)) false
else sieve(next.tail)
}

sieve(primes)

}

23

Numeric Integration with
Streams

J=1

Numeric Integration with
Streams

def 1integral(integrand: Stream[Double],
init: Double,
dt: Double) = {

def inner(): Stream[Double] = {
Cons(init,
addStreams(scaleStream(dt,
integrand),
inner))

inner

25

Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]):
Stream[Int] = {
Cons(balance,
withdraw(balance - amounts.head,
amounts.tail))

26

Discussion

Our modeling of a bank account is a purely functional
program without state

Nevertheless:
If a user provides the stream of withdrawals, and
The stream of balances is displayed as outputs,

The system will behave from a user’s perspective as a
stateful system

27

Discussion

The key to understanding this paradox is that the
“state” is in the world:

The user/bank system is stateful and provides the
Input stream

If we could “step outside” our own perspective in

time, we could view our withdrawal stream as
another stateless stream of transactions

28

