Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

November 13, 2018



Announcements

. Homework 4 is due Thursday

. Final exam info is on the class calendar



Some Additional Scala
Features



Scripting in Scala

Scala is designed for building large-scale systems
It also scales down to small scripts:

In a single file, we can place class definitions,
function definitions, and even top-level expressions



Scripting in Scala

. In asingle file hello.scala, write:

println(“Hello, scripting world!"”)

. From the command-line (in an environment where

scala has been installed):

scala hello.scala



Scripting in Scala

. Command-line arguments are available via a global

array named args:
println(“Hello, " + args(0) + “I")



Scripting in Scala

. At the shell:

scala hello.scala Owls

. And the result is:

Hello, Owls!



Scripting in Scala

. On Unix, you can run a Scala script directly from the shell by
putting a shebang at the top of your script:

#!'/usr/bin/env scala

println("hello")

. Then make the file executable (let’s name the file he 1l 10):

chmod u+x hello



Scala Applications
The “Java” Way

. To compile a stand-alone Scala application, you can put

the driver into a singleton object with a main method



Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths {
def main(args: Array[String]): Unit = {
for (arg <- args)
println(arg + ": " + arg.length)



Scala Applications
The "Scala” Way

. To compile a stand-alone Scala application, you can put

the driver into a singleton object with the App trait

. All code in the body of the object (i.e., the “constructor”
code) is run when the app is launched



Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths extends App {
for (arg <- args) {
println(arg + ": " + arg.length)
}\

For loops (no yeild keyword) are only for side-effects.
Just syntactic sugar for the foreach method.



Scala Applications

. Any singleton object might contain a main method that
takes an argument of type Array[String]:

package edu.rice.cs.comp31l.lectures.lecture2?

object ArgLengths extends App {
args foreach { arg =>
println(arg + ": " + arg.length)
}
}



Scala Applications

Compile using scalac or fsc
. scalac will recompile all referenced jars, files,...
Therefore, it can be slow

» TS starts a process the first time it is run that
memoizes compilation of referenced files



Scala Applications

Execute a compiled classfile using the scala
command

Include the full path name

scala edu.rice.cs.comp3ll.lectures.lecture22.ArgLengths



Fields in Non-Case Classes

. constructor of a class is a function:

. When it is called, the enclosing environment is
extended and an object is returned, as defined by the
body of the class



Fields in Non-Case Classes

A natural consequence:
The arguments to a constructor call are not directly
accessible outside the object that is returned from
the call

To make a parameter accessible, define a field

Case classes automatically define a field for every
constructor parameter



The Follow Code Will Not Pass
Type Checking

class Rational (numerator: Int, denominator: Int) {
def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denomilnator,
denominator * that.denominator)



Declaring the Fields Explicitly
Fixes The Problem

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d
def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)



Auxiliary Constructors

Scala allows for multiple constructor declarations

Additional constructors are defined as methods with
name this

The first action of an auxiliary constructor must be to
invoke another constructor

Only constructors defined earlier in the class
definition are in scope



Auxiliary Constructors

class Rational(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)



Auxiliary Constructors

class Rational(
val numerator: Int,
val denominator: Int) {

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)



Companion Objects

. A class can be given a companion object:
. A ssingleton object definition with the same name
. Must be defined in the same file as the class

. The object and class share private members



Companion Objects and
Factory Methods

. Companion objects are well-suited for defining factory
methods:

object Rational {
def apply(n: Int, d: Int) =
if (d !'= 0) new Rational(n, d)
else throw new Error("Given a zero denominator")



Private Primary Constructors

. Primary constructors can be hidden by prefixing them
with the keyword private:

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def this(n: Int) = this(n, 1)

def +(that: Rational) =
new Rational(numerator * that.denominator +
that.numerator * denominator,
denominator * that.denominator)



Private Constructors and
Companion Objects

V V V.V

Rational(l,1)
Rational(1,0)

new Rational(1l,2)
new Rational(2)

//
//
//
//

ok
error

error
ok



Extractors



Extractors

It is possible to control how an object will interact with
pattern matching through the use of extractors

Extractors are objects that define an unapply method,
which takes an object and returns an option of one or

more elements



Extractors

object Rational {
def apply(n: Int, d: Int) = {
if (d '= 0) new Rational(n, d)
else throw new Error("Given a zero denominator")

}

def unapply(qg: Rational): Option[(Int, Int)] = {
Some((q.numerator, q.denominator))

}
}



Extractors

. An unapply method is called in a pattern by prefixing
the name of the extractor object followed by a tuple of
expected elements

. If the unapply method returns Some((x1,...xN)) and the
arity of the tuple (x1,..xN) matches the number of
bound variables in the pattern, we have a match



Extractors

class Rational private(n: Int, d: Int) {
val numerator = n
val denominator = d

def +(that: Rational) = {
that match {
case Rational(n2,d2) =>
Rational(n * d2 + n2 * d,
d * d2)



Case Classes Revisited

. We are now in a position to better explain what a case class definition is
given implicitly:

Immutable fields for every parameter
. Structural equals and hashCode methods
. A structural toString method
. A companion object with apply and unapply methods

. A COpY method with parameters for each constructor parameter,
defaulted to the field values of the receiver



Extractors vs Case Classes

Explicit extractors are more verbose than using case classes
However, they have advantages of their own:
separates implementation from pattern matching
can deconstruct objects outside of their class definitions
can perform more sophisticated deconstruction

e.g. regular expression matching on strings



Extractors vs Case Classes

. Case classes also have many advantages:

. Conciseness

Performance: Scala compiler optimizes patterns with
case classes aggressively



